Τρίτη, 17 Οκτωβρίου 2017

2004 IMO Shortlist G4

In a convex quadrilateral $ABCD$ the diagonal $BD$ does not bisect the angles $ABC$ and $CDA$.  The point $P$  lies inside $ABCD$ and satisfies $\angle  PBC = \angle  DBA$   and   $\angle  PDC = \angle    BDA$. Prove that $ABCD$ is a cyclic quadrilateral if and only if $AP = CP$ .

posted in aops here

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου