Τρίτη, 17 Οκτωβρίου 2017

2005 IMO Shortlist G6

The median $AM$ of a triangle $ABC$ intersects its incircle $\omega$ at $K$ and $L$. The lines through $K$ and $L$ parallel to BC intersect \omega again at $X$ and $Y$ .  The lines $AX$ and $AY$ intersect $BC$ at  $P $ and $Q$. Prove that $BP = CQ$.

posted in aops here

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου