Τρίτη, 17 Οκτωβρίου 2017

2001 IMO Shortlist G4

Let $M$ be a point in the interior of triangle $ABC$. Let $A’$ lie on $BC$ with $MA’$ perpendicular to $BC$. Define $B’$ on $CA$ and $C’$ on $AB$ similarly. Define $p(M) = \frac{MA’ \cdot MB’ \cdot MC’}{ MA \cdot MB \cdot MC} $. Determine, with proof, the location of $M$ such that $p(M)$ is maximal. Let $\mu (ABC)$ denote this maximum value. For which triangles $ABC$ is the value of $\mu (ABC)$ maximal?


posted in aops here

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου