Τρίτη, 17 Οκτωβρίου 2017

2001 IMO Shortlist G7

Let $O$ be an interior point of acute triangle $ABC$. Let $A_1$ lie on $BC$ with $OA_1$ perpendicular to $BC$. Define $B_1$ on $CA$ and $C_1$ on $AB$ similarly. Prove that $O$ is the circumcenter of $ABC$ if and only if the perimeter of $A_1B_1C_1$ is not less than any one of the perimeters of $AB_1C_1,BC_1A_1$, and $CA_1B_1$.

posted in aops here

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου