drop down menu

Austria Federal, part 1, 1997 - 2022 28p

geometry problems from Austrian Federal Competition For Advanced Students. part 1
with aops links in the names

collected inside aops here

1997 - 2022

final round, mislabeled as part 2 inside aops

1997 Austria Federal finals, p3
Let be given a triangle $ABC$. Points $P$ on side $AC$ and $Y$ on the production of $CB$ beyond $B$ are chosen so that $Y$ subtends equal angles with $AP$ and $PC$. Similarly, $Q$ on side $BC$ and $X$ on the production of $AC$ beyond $C$ are such that $X$ subtends equal angles with $BQ$ and $QC$. Lines $YP$ and $XB$ meet at $R$, $XQ$ and $YA$ meet at $S$, and $XB$ and $YA$ meet at $D$. Prove that $PQRS$ is a parallelogram if and only if $ACBD$ is a cyclic quadrilateral

1998 Austria Federal finals, p6
In a parallelogram $ABCD$ with the side ratio $AB : BC = 2 : \sqrt 3$ the normal through $D$ to $AC$ and the normal through $C$ to $AB$ intersects in the point $E$ on the line $AB$. What is the relationship between the lengths of the diagonals $AC$ and $BD$?

1999 Austria Federal finals , p2
Let $\epsilon$ be a plane and $k_1, k_2, k_3$ be spheres on the same side of $\epsilon$. The spheres $k_1, k_2, k_3$ touch the plane at points $T_1, T_2, T_3$, respectively, and $k_2$ touches $k_1$ at  $S_1$ and $k_3$ at $S_3$. Prove that the lines $S_1T_1$ and $S_3T_3$ intersect on the sphere $k_2$. Describe the locus of the intersection point.

2000 Austria Federal finals, p2
A trapezoid $ABCD$ with $AB \parallel CD$ is inscribed in a circle $k$. Points $P$ and $Q$ are chose on the arc $ADCB$ in the order $A-P -Q-B$. Lines $CP$ and $AQ$ meet at $X$, and lines $BP$ and $DQ$ meet at $Y$. Show that points $P,Q,X, Y$ lie on a circle.

2000 Austria Federal finals, p4
In a non-equilateral acute-angled triangle $ABC$ with $\angle C = 60^\circ$, $U$ is the circumcenter, $H$ the orthocenter and $D$ the intersection of $AH$ and $BC$. Prove that the Euler line $HU$ bisects the angle $BHD$.

2001 Austria Federal finals, p3
A triangle $ABC$ is inscribed in a circle with center $U$ and radius $r$. A tangent $c'$ to a larger circle $K(U, 2r)$ is drawn so that C lies between the lines $c = AB$ and $C'$. Lines $a'$ and $b'$ are analogously defined. The triangle formed by $a', b', c'$ is denoted $A'B'C'$. Prove that the three lines, joining the midpoints of pairs of parallel sides of the two triangles, have a common point.

2001 Austria Federal finals, p6
Let be given a semicircle with the diameter $AB$, and points $C,D$ on it such that $AC = CD$. The tangent at $C$ intersects the line $BD$ at $E$. The line $AE$ intersects the arc of the semicircle at $F$. Prove that $CF < FD$.

part 2 stated in 2002 and since there, this is called part 1

2002 Austria Federal part1 , p4
Let $A,C, P$ be three distinct points in the plane. Construct all parallelograms $ABCD$ such that point $P$ lies on the bisector of angle $DAB$ and $\angle APD = 90^\circ$.

2003 Austria Federal part1 , p4
In a parallelogram $ABCD$, points $E$ and $F$ are the midpoints of $AB$ and $BC$, respectively, and $P$ is the intersection of $EC$ and $FD$. Prove that the segments $AP,BP,CP$ and $DP$ divide the parallelogram into four triangles whose areas are in the ratio $1 : 2 : 3 : 4$

2004 Austria Federal part1 , p2
A convex hexagon $ABCDEF$ with $AB = BC = a, CD = DE = b, EF = FA = c$ is inscribed in a circle. Show that this hexagon has three (pairwise disjoint) pairs of mutually perpendicular diagonals.

2005 Austria Federal part1 , p4
We're given two congruent, equilateral triangles $ABC$ and $PQR$ with parallel sides, but one has one vertex pointing up and the other one has the vertex pointing down. One is placed above the other so that the area of intersection is a hexagon $A_1A_2A_3A_4A_5A_6$ (labelled counterclockwise). Prove that $A_1A_4$, $A_2A_5$ and $A_3A_6$ are concurrent.

2006 Austria Federal part1 , p3
In the triangle $ ABC$ let $ D$ and $ E$ be the boundary points of the incircle with the sides $ BC$ and $ AC$. Show that if  $ AD=BE$ holds, then the triangle is isoceles.

2007 Austria Federal part1 , p4
Let $ n > 4$ be a non-negative integer. Given is the in a circle inscribed convex $ n$-gon $ A_0A_1A_2\dots A_{n- 1}A_n$ $ (A_n = A_0)$ where the side $ A_{i - 1}A_i =i$ (for $ 1 \le i \le n$). Moreover, let $ \phi_i$ be the angle between the line $ A_iA_{i +1}$ and the tangent to the circle in the point $ A_i$ (where the angle $ \phi_i$ is less than or equal $ 90^o$, i.e. $ \phi_i$ is always the smaller angle of the two angles between the two lines). Determine the sum $ \Phi = \sum_{i = 0}^{n -1} \phi_i$ of these $ n$ angles.

2008 Austria Federal part1 , p4
In a triangle $ABC$ let $E$ be the midpoint of the side $AC$ and $F$ the midpoint of the side $BC$. Let $G$ be the foot of the perpendicular from $C$ to $ AB$. Show that $\vartriangle EFG$ is isosceles if and only if $\vartriangle ABC$ is isosceles

2009 Austria Federal part1 , p4
Let $D, E$, and $F$ be respectively the midpoints of the sides $BC, CA$, and $AB$ of $\vartriangle ABC$. Let $H_a, H_b, H_c$ be the feet of perpendiculars from $A, B, C$ to the opposite sides, respectively. Let $P, Q, R$ be the midpoints of the $H_bH_c, H_cH_a$, and $H_aH_b$ respectively. Prove that $PD, QE$, and $RF$ are concurrent.

2010 Austria Federal part1 , p4
The the parallel lines through an inner point $P$ of triangle $\triangle ABC$ split the triangle into three parallelograms and three triangles adjacent to the sides of $\triangle ABC$.
(a) Show that if $P$ is the incenter, the perimeter of each of the three small triangles equals the length of the adjacent side.
(b) For a given triangle $\triangle ABC$, determine all inner points $P$ such that the perimeter of each of the three small triangles equals the length of the adjacent side.
(c) For which inner point does the sum of the areas of the three small triangles attain a minimum?

2011 Austria Federal part1 , p4
Inside or on the faces of a tetrahedron with five edges of length $2$ and one edge of lenght $1$, there is a point $P$ having distances $a, b, c, d$ to the four faces of the tetrahedron. Determine the locus of all points $P$ such that $a+b+c+d$ is minimal and the locus of all points $P$ such that $a+b+c+d$ is maximal.

2012 Austria Federal part1 , p4
Let $ABC$ be a scalene (i.e. non-isosceles) triangle. Let $U$ be the center of the circumcircle of this triangle and $I$ the center of the incircle. Assume that the second point of intersection different from $C$ of the angle bisector of $\gamma = \angle ACB$ with the circumcircle of $ABC$ lies on the perpendicular bisector of $UI$. Show that $\gamma$ is the second-largest angle in the triangle $ABC$.

2013 Austria Federal part1 , p4
Let $A$, $B$ and $C$ be three points on a line (in this order). For each circle $k$ through the points $B$ and $C$, let $D$ be one point of intersection of the perpendicular bisector of $BC$ with the circle $k$. Further, let $E$ be the second point of intersection of the line $AD$ with $k$. Show that for each circle $k$, the ratio of lengths $\overline{BE}:\overline{CE}$ is the same.

2014 Austria Federal part1 , p2
We are given a right-angled triangle $MNP$ with right angle in $P$. Let $k_M$ be the circle with center $M$ and radius $MP$, and let $k_N$ be the circle with center $N$ and radius $NP$. Let $A$ and $B$ be the common points of $k_M$ and the line $MN$, and let $C$ and $D$ be the common points of $k_N$ and the line $MN$ with with $C$ between $A$ and $B$. Prove that the line $PC$ bisects the angle $\angle APB$.

2015 Austria Federal part1 , p2
Let $ABC$ be an acute-angled triangle with $AC < AB$ and circumradius $R$. Furthermore, let $D$ be the foot ofthe altitude from $A$ on $BC$ and let $T$ denote the point on the line $AD$ such that $AT = 2R$ holds with $D$ lying between $A$ and $T$. Finally, let $S$ denote the mid-point of the arc $BC$ on the circumcircle that does not include $A$. Prove: $\angle AST = 90^\circ$.

Karl Czakler
2016 Austria Federal part1 , p2
We are given an acute triangle $ABC$ with $AB > AC$ and orthocenter $H$. The point $E$ lies symmetric to $C$ with respect to the altitude $AH$. Let $F$ be the intersection of the lines $EH$ and $AC$. Prove that the circumcenter of the triangle $AEF$ lies on the line $AB$.

Karl Czakler
2017 Austria Federal part1 , p2
Let $ABCDE$ be a regular pentagon with center $M$. A point $P$ (different from $M$) is chosen on the line segment $MD$. The circumcircle of $ABP$ intersects the line segment $AE$ in $A$ and $Q$ and the line through $P$ perpendicular to $CD$ in $P$ and $R$. Prove that $AR$ and $QR$ have same length.

 Stephan Wagner
2018 Austria Federal part1 , p2
Let $ABC$ be a triangle with incenter $I$. The incircle of the triangle is tangent to the sides $BC$ and $AC$ in points $D$ and $E$, respectively. Let $P$ denote the common point of lines $AI$ and $DE$, and let $M$ and $N$ denote the midpoints of sides $BC$ and $AB$, respectively. Prove that points $M, N$ and $P$ are collinear.

Karl Czakler

Let $ABC$ be a triangle and $I$ its incenter. The circle passing through $A, C$ and $I$ intersect the line $BC$ for second time at point $X$. The circle passing through $B, C$ and $I$ intersects the line $AC$ for second time at point $Y$. Show that the segments $AY$ and $BX$ have equal length.

Theresia Eisenkölbl
Let $ABC$ be a right triangle with a right angle in $C$ and a circumcenter $U$. On the sides $AC$ and $BC$, the points $D$ and $E$ lie in such a way that $\angle EUD = 90 ^o$. Let $F$ and $G$ be the projection of $D$ and $E$ on $AB$, respectively. Prove that $FG$ is half as long as $AB$.

Walther Janous
Let $ABC$ denote a triangle. The point $X$ lies on the extension of $AC$ beyond $A$, such that $AX = AB$. Similarly, the point $Y$ lies on the extension of $BC$ beyond $B$ such that $BY = AB$. Prove that the circumcircles of $ACY$ and $BCX$ intersect a second time in a point different from $C$ that lies on the bisector of the angle $\angle BCA$.
Theresia Eisenkölbl

The points $A, B, C, D$ lie in this order on a circle with center $O$. Furthermore, the straight lines $AC$ and $BD$ should be perpendicular to each other. The base of the perpendicular from $O$ on $AB$ is $F$. Prove $CD = 2  OF$.
Karl Czakler

No comments:

Post a Comment