drop down menu

Indonesia 2002-21 (INAMO) (OSN) + SHL 82p

geometry problems from Indonesian National Science Olympiads (INAMO) (OSN)
with aops links in the names

Olimpiade Sains Nasional


                                      Indonesia MO 2002 - 2021
and Shortlist Geometry 2008-10, 2014-15, 2017


INAMO Shortlist in aops: 2014, 2015
Indonesia Shortlist Geometry inside aops: here

2002 Indonesia MO P4
Given a triangle $ABC$ where $AC > BC$, $D$ is located on the circumcircle of $ABC$ such that $D$ is the midpoint of the arc $AB$ that contains $C$. $E$ is a point on $AC$ such that $DE$ is perpendicular to $AC$. Prove that $AE = EC + CB$.

2002 Indonesia MO P7
Let $ABCD$ be a rhombus where $\angle DAB = 60^\circ$, and $P$ be the intersection between $AC$ and $BD$. Let $Q,R,S$ be three points on the boundary of $ABCD$ such that $PQRS$ is a rhombus. Prove that exactly one of $Q,R,S$ lies on one of $A,B,C,D$.

2003 Indonesia MO P2
Let $ABCD$ be a quadrilateral, and $P,Q,R,S$ are the midpoints of $AB, BC, CD, DA$ respectively. Let $O$ be the intersection between $PR$ and $QS$. Prove that $PO = OR$ and $QO = OS$.

2004 Indonesia MO P4
There exists 4 circles, $ a,b,c,d$, such that $ a$ is tangent to both $ b$ and $ d$, $ b$ is tangent to both $ a$ and $ c$, $ c$ is both tangent to $ b$ and $ d$, and $ d$ is both tangent to $ a$ and  $ c$. Show that all these tangent points are located on a circle.

2004 Indonesia MO P7
Given triangle $ ABC$ with $ C$ a right angle, show that the diameter of the incenter is $ a+b-c$, where $ a=BC$, $ b=CA$, and $ c=AB$.

2005 Indonesia MO P4
Let $ M$ be a point in triangle $ ABC$ such that $ \angle AMC=90^{\circ}$, $ \angle AMB=150^{\circ}$, $ \angle BMC=120^{\circ}$. The centers of circumcircles of triangles $ AMC,AMB,BMC$ are $ P,Q,R$, respectively. Prove that the area of $ \triangle PQR$ is greater than the area of $ \triangle ABC$.

2005 Indonesia MO P7
Let $ ABCD$ be a convex quadrilateral. Square $ AB_1A_2B$ is constructed such that the two vertices $ A_2,B_1$ is located outside $ ABCD$. Similarly, we construct squares $ BC_1B_2C$, $ CD_1C_2D$, $ DA_1D_2A$. Let $ K$ be the intersection of $ AA_2$ and $ BB_1$, $ L$ be the intersection of $ BB_2$ and $ CC_1$, $ M$ be the intersection of $ CC_2$ and $ DD_1$, and $ N$ be the intersection of $ DD_2$ and $ AA_1$. Prove that $ KM$ is perpendicular to $ LN$.

2006 Indonesia MO P5
In triangle $ ABC$, $ M$ is the midpoint of side $ BC$ and $ G$ is the centroid of triangle $ ABC$. A line $ l$ passes through $ G$, intersecting line $ AB$ at $ P$ and line $ AC$ at $ Q$, where $ P\ne B$ and $ Q\ne C$. If $ [XYZ]$ denotes the area of triangle $ XYZ$, show that $ \frac{[BGM]}{[PAG]}+\frac{[CMG]}{[QGA]}=\frac32$.

2007 Indonesia MO P1
Let $ ABC$ be a triangle with $ \angle ABC=\angle ACB=70^{\circ}$. Let point $ D$ on side $ BC$ such that $ AD$ is the altitude, point $ E$ on side $ AB$ such that $ \angle ACE=10^{\circ}$, and point $ F$ is the intersection of $ AD$ and $ CE$. Prove that $ CF=BC$.

2007 Indonesia MO P7
Points $ A,B,C,D$ are on circle $ S$, such that $ AB$ is the diameter of $ S$, but $ CD$ is not the diameter. Given also that $ C$ and $ D$ are on different sides of $ AB$. The tangents of $ S$ at $ C$ and $ D$ intersect at $ P$. Points $ Q$ and $ R$ are the intersections of line $ AC$ with line $ BD$ and line $ AD$ with line $ BC$, respectively.
(a) Prove that $ P$, $ Q$, and $ R$ are collinear.
(b) Prove that $ QR$ is perpendicular to line $ AB$.

2008 Indonesia MO P1
Given triangle $ ABC$. Points $ D,E,F$ outside triangle $ ABC$ are chosen such that triangles $ ABD$, $ BCE$, and $ CAF$ are equilateral triangles. Prove that cicumcircles of these three triangles are concurrent.

2008 Indonesia MO P7
Given triangle $ ABC$ with sidelengths $ a,b,c$. Tangents to incircle of $ ABC$ that parallel with triangle's sides form three small triangle (each small triangle has 1 vertex of $ ABC$). Prove that the sum of area of incircles of these three small triangles and the area of incircle of triangle $ ABC$ is equal to
$ \frac{\pi (a^{2}+b^{2}+c^{2})(b+c-a)(c+a-b)(a+b-c)}{(a+b+c)^{3}}$

2009 Indonesia MO P3
For every triangle $ ABC$, let $ D,E,F$ be a point located on segment $ BC,CA,AB$, respectively. Let $ P$ be the intersection of $ AD$ and $ EF$. Prove that:
$ \frac{AB}{AF}\cdot DC+\frac{AC}{AE}\cdot  DB=\frac{AD}{AP}\cdot  BC$

2009 Indonesia MO P4
Given an acute triangle $ ABC$. The incircle of triangle $ ABC$ touches $ BC,CA,AB$ respectively at $ D,E,F$. The angle bisector of $ \angle A$ cuts $ DE$ and $ DF$ respectively at $ K$ and $ L$. Suppose $ AA_1$ is one of the altitudes of triangle $ ABC$, and $ M$ be the midpoint of $ BC$.
(a) Prove that $ BK$ and $ CL$ are perpendicular with the angle bisector of $ \angle BAC$.
(b) Show that $ A_1KML$ is a cyclic quadrilateral.

2010 Indonesia MO P2
Given an acute triangle $ABC$ with $AC>BC$ and the circumcenter of triangle $ABC$ is $O$. The altitude of triangle $ABC$ from $C$ intersects $AB$ and the circumcircle at $D$ and $E$, respectively. A line which passed through $O$ which is parallel to $AB$ intersects $AC$ at $F$. Show that the line $CO$, the line which passed through $F$ and perpendicular to $AC$, and the line which passed through $E$ and parallel with $DO$ are concurrent.

by Fajar Yuliawan, Bandung
2010 Indonesia MO P8
Given an acute triangle $ABC$ with circumcenter $O$ and orthocenter $H$. Let $K$ be a point inside $ABC$ which is not $O$ nor $H$. Point $L$ and $M$ are located outside the triangle $ABC$ such that $AKCL$ and $AKBM$ are parallelogram. At last, let $BL$ and $CM$ intersects at $N$, and let $J$ be the midpoint of $HK$. Show that $KONJ$ is also a parallelogram.

by Raja Oktovin, Pekanbaru
2011 Indonesia MO P3
Given an acute triangle $ABC$, let $l_a$ be the line passing $A$ and perpendicular to $AB$, $l_b$ be the line passing $B$ and perpendicular to $BC$, and $l_c$ be the line passing $C$ and perpendicular to $CA$. Let $D$ be the intersection of $l_b$ and $l_c$, $E$ be the intersection of $l_c$ and $l_a$, and $F$ be the intersection of $l_a$ and $l_b$. Prove that the area of the triangle $DEF$ is at least three times of the area of $ABC$.[/quote]

2011 Indonesia MO P8
Given a triangle $ABC$. Its incircle is tangent to $BC, CA, AB$ at $D, E, F$ respectively. Let $K, L$ be points on $CA, AB$ respectively such that $K \neq A \neq L, \angle EDK = \angle ADE, \angle FDL = \angle ADF$. Prove that the circumcircle of $AKL$ is tangent to the incircle of $ABC$.

2012 Indonesia MO P3
Given an acute triangle $ABC$ with $AB>AC$ that has circumcenter $O$. Line $BO$ and $CO$ meet the bisector of $\angle BAC$ at $P$ and $Q$, respectively. Moreover, line $BQ$ and $CP$ meet at $R$. Show that $AR$ is perpendicular to $BC$.

by Soewono and Fajar Yuliawan
2012 Indonesia MO P8
Given a triangle $ABC$, let the bisector of $\angle BAC$ meets the side $BC$ and circumcircle of triangle $ABC$ at $D$ and $E$, respectively. Let $M$ and $N$ be the midpoints of $BD$ and $CE$, respectively. Circumcircle of triangle $ABD$ meets $AN$ at $Q$. Circle passing through $A$ that is tangent to $BC$ at $D$ meets line $AM$ and side $AC$ respectively at $P$ and $R$. Show that the four points $B,P,Q,R$ lie on the same line.

by Fajar Yuliawan
2013 Indonesia MO P2
Let $ABC$ be an acute triangle and $\omega$ be its circumcircle. The bisector of $\angle BAC$ intersects $\omega$ at [another point] $M$. Let $P$ be a point on $AM$ and inside $\triangle ABC$. Lines passing $P$ that are parallel to $AB$ and $AC$ intersects $BC$ on $E, F$ respectively. Lines $ME, MF$ intersects $\omega$ at points $K, L$ respectively. Prove that $AM, BL, CK$ are concurrent.

2013 Indonesia MO P7
Let $ABCD$ be a parallelogram. Construct squares $ABC_1D_1, BCD_2A_2, CDA_3B_3, DAB_4C_4$ on the outer side of the parallelogram. Construct a square having $B_4D_1$ as one of its sides and it is on the outer side of $AB_4D_1$ and call its center $O_A$. Similarly do it for $C_1A_2, D_2B_3, A_3C_4$ to obtain $O_B, O_C, O_D$. Prove that $AO_A = BO_B = CO_C = DO_D$.

2014 Indonesia MO P3
Let $ABCD$ be a trapezoid (quadrilateral with one pair of parallel sides) such that $AB < CD$. Suppose that $AC$ and $BD$ meet at $E$ and $AD$ and $BC$ meet at $F$. Construct the parallelograms $AEDK$ and $BECL$. Prove that $EF$ passes through the midpoint of the segment $KL$.

2014 Indonesia MO P6
Let $ABC$ be a triangle. Suppose $D$ is on $BC$ such that $AD$ bisects $\angle BAC$. Suppose $M$ is on $AB$ such that $\angle MDA = \angle ABC$, and $N$ is on $AC$ such that $\angle NDA = \angle ACB$. If $AD$ and $MN$ intersect on $P$, prove that $AD^3 = AB \cdot AC \cdot AP$.

2015 Indonesia MO P3
Given an acute triangle $ABC$. $\Gamma _{B}$ is a circle that passes through $AB$, tangent to $AC$ at $A$ and centered at $O_{B}$. Define $\Gamma_C$ and $O_C$ the same way. Let the altitudes of $\triangle ABC$ from $B$ and $C$ meets the circumcircle of $\triangle ABC$ at $X$ and $Y$, respectively. Prove that $A$, the midpoint of $XY$ and the midpoint of $O_{B}O_{C}$ is collinear.

2015 Indonesia MO P3
Given an acute triangle $ABC$. $\Gamma _{B}$ is a circle that passes through $AB$, tangent to $AC$ at $A$ and centered at $O_{B}$. Define $\Gamma_C$ and $O_C$ the same way. Let the altitudes of $\triangle ABC$ from $B$ and $C$ meets the circumcircle of $\triangle ABC$ at $X$ and $Y$, respectively. Prove that $A$, the midpoint of $XY$ and the midpoint of $O_{B}O_{C}$ is collinear.

Let $ABC$ be an acute angled triangle with circumcircle $O$. Line $AO$ intersects the circumcircle of triangle  $ABC$ again at point $D$. Let $P$ be a point on the side  $BC$. Line passing through $P$ perpendicular to $AP$ intersects lines  $DB$ and $DC$ at $E$ and $F$ respectively . Line passing through $D$ perpendicular to $BC$ intersects $EF$ at point $Q$. Prove that $EQ = FQ$ if and only if $BP = CP$.

2016 Indonesia MO P1
Let $ABCD$ be a cyclic quadrilateral wih both diagonals perpendicular to each other and intersecting at point $O$. Let $E,F,G,H$ be the orthogonal projections of $O$ on sides $AB,BC,CD,DA$ respectively.
a. Prove that $\angle EFG + \angle  GHE = 180^o$
b. Prove that $OE$ bisects angle  $\angle FEH$ .

2016 Indonesia MO P6
For a quadrilateral $ABCD$, we call a square $amazing$ if all of its sides(extended if necessary) pass through distinct vertices of $ABCD$(no side passing through 2 vertices). Prove that for an arbitrary $ABCD$ such that its diagonals are not perpendicular, there exist at least 6 $amazing$ squares

2017 Indonesia MO P1
$ABCD$ is a parallelogram. $g$ is a line passing $A$. Prove that the distance from $C$ to $g$ is either the sum or the difference of the distance from $B$ to $g$, and the distance from $D$ to $g$.

2017 Indonesia MO P7
Let $ABCD$ be a parallelogram. $E$ and $F$ are on $BC, CD$ respectively such that the triangles $ABE$ and $BCF$ have the same area. Let $BD$ intersect $AE, AF$ at $M, N$ respectively. Prove there exists a triangle whose side lengths are $BM, MN, ND$.

2018 Indonesia MO P2
Let $\Gamma_1, \Gamma_2$ be circles that touch at a point $A$, and $\Gamma_2$ is inside $\Gamma_1$. Let $B$ be on $\Gamma_2$, and let $AB$ intersect $\Gamma_1$ on $C$. Let $D$ be on $\Gamma_1$ and $P$ be on the line $CD$ (may be outside of the segment $CD$). $BP$ intersects $\Gamma_2$ at $Q$. Prove that $A,D,P,Q$ lie on a circle.

2018 Indonesia MO P8
Let $I, O$ be the incenter and circumcenter of the triangle $ABC$ respectively. Let the excircle $\omega_A$ of $ABC$ be tangent to the side $BC$ on $N$, and tangent to the extensions of the sides $AB, AC$ on $K, M$ respectively. If the midpoint of $KM$ lies on the circumcircle of $ABC$, prove that $O, I, N$ are collinear.

2019 Indonesia MO P3
Given that $ABCD$ is a rectangle such that $AD > AB$, where $E$ is on $AD$ such that $BE \perp AC$. Let $M$ be the intersection of $AC$ and $BE$. Let the circumcircle of $\triangle ABE$ intersects $AC$ and $BC$ at $N$ and $F$. Moreover, let the circumcircle of $\triangle DNE$ intersects $CD$ at $G$. Suppose $FG$ intersects $AB$ at $P$. Prove that $PM = PN$.

2019 Indonesia MO P6
Given a circle with center $O$, such that $A$ is not on the circumcircle. Let $B$ be the reflection of $A$ with respect to $O$. Now let $P$ be a point on the circumcircle. The line perpendicular to $AP$ through $P$ intersects the circle at $Q$.Prove that $AP \times BQ$ remains constant as $P$ varies.
Given an acute triangle $ABC$ and the point $D$ on segment $BC$. Circle $c_1$ passes through $A, D$ and its centre lies on $AC$. Whereas circle $c_2$ passes through $A, D$ and its centre lies on $AB$. Let $P \neq A$ be the intersection of $c_1$ with $AB$ and $Q \neq A$ be the intersection of $c_2$ with $AC$. Prove that $AD$ bisects $\angle{PDQ}$.

Given a cyclic quadrilateral $ABCD$. Let $X$ be a point on segment $BC$ ($X \not= BC$) such that
line $AX$ is perpendicular to the angle bisector of $\angle CBD$, and $Y$ be a point on segment $AD$
($Y \not= D)$ such that $BY$ is perpendicular to the angle bisector of $\angle CAD$. Prove that $XY$
is parallel to $CD$.

Let $ABC$ be an acute triangle. Let $D$ and $E$ be the midpoint of segment $AB$ and $AC$
respectively. Suppose $L_1$ and $L_2$ are circumcircle of triangle $ABC$ and $ADE$ respectively.
$CD$ intersects $L_1$ and $L_2$ at $M (M \not= C)$ and $N (N \not= D)$. If $DM = DN$, prove that
$\triangle ABC$ is isosceles. 2021 Indonesia MO P7
Given $\triangle ABC$ with circumcircle $\ell$. Point $M$ in $\triangle ABC$ such that $AM$ is the
angle bisector of $\angle BAC$. Circle with center $M$ and radius $MB$ intersects $\ell$ and $BC$
at $D$ and $E$ respectively, $(B \not= D, B \not= E)$. Let $P$ be the midpoint of arc $BC$ in $\ell$
that didn't have $A$. Prove that $AP$ angle bisector of $\angle DPE$ if and only if $\angle B = 90^{\circ}$.

2008, 2010, 2014-15
INAMO Geometry Shortlist


Given triangle $ ABC$. Points $ D,E,F$ outside triangle $ ABC$ are chosen such that triangles $ ABD$, $ BCE$, and $ CAF$ are equilateral triangles. Prove that circumcircles of these three triangles are concurrent.

Let $ABC$ be an isosceles triangle right at $C$ and $P$ any point on $CB$. Let also $Q$ be the midpoint of $AB$ and $R, S$ be the points on $AP$ such that $CR$ is perpendicular to $AP$ and $|AS|=|CR|$. Prove that the $|RS|  =  \sqrt2 |SQ|$.

Given triangle $ABC$. A circle $\Gamma$ is tangent to the circumcircle of triangle $ABC$ at $A$ and tangent to $BC$ at $D$. Let $E$ be the intersection of circle $\Gamma$ and $AC$. Prove that
$$R^2=OE^2+CD^2\left(1- \frac{BC^2}{AB^2+AC^2}\right)$$where $O$ is the center of the circumcircle of triangle $ABC$, with radius $R$.

Given that two circles $\sigma_1$ and $\sigma_2$ internally tangent at $N$ so that $\sigma_2$ is inside $\sigma_1$. The points $Q$ and $R$ lies at $\sigma_1$ and $\sigma_2$, respectively, such that $N,R,Q$ are collinear. A line through $Q$ intersects $\sigma_2$ at $S$ and intersects $\sigma_1$ at $O$. The line through $N$ and $S$ intersects $\sigma_1$ at $P$. Prove that$$\frac{PQ^3}{PN^2} = \frac{PS \cdot RS}{NS}.$$

Let $ABCD$ be quadrilateral inscribed in a circle. Let $M$ be the midpoint of the segment $BD$. If the tangents of the circle at $ B$, and at $D$ are also concurrent with the extension of $AC$, prove that $\angle AMD = \angle CMD$.

Given triangle $ ABC$ with sidelengths $ a,b,c$. Tangents to incircle of $ ABC$ that parallel with triangle's sides form three small triangle (each small triangle has 1 vertex of $ ABC$). Prove that the sum of area of incircles of these three small triangles and the area of incircle of triangle $ ABC$ is equal to
$ \frac{\pi (a^{2}+b^{2}+c^{2})(b+c-a)(c+a-b)(a+b-c)}{(a+b+c)^{3}}$

Given an isosceles trapezoid $ABCD$ with base $AB$. The diagonals $AC$ and $BD$ intersect at point $S$. Let $M$ the midpoint of $BC$ and the bisector of the angle $BSC$ intersect $BC$ at $N$. Prove that $\angle AMD = \angle AND$.

Prove that there is only one triangle whose sides are consecutive natural numbers and one of the angles is twice the other angle.

Given a triangle $ABC$, the points $D$, $E$, and $F$ lie on the sides $BC$, $CA$, and $AB$, respectively, are such that
$$DC + CE = EA + AF = FB + BD.$$Prove that$$DE + EF + FD \ge \frac12 (AB + BC + CA).$$

Given a triangle $ABC$ with $AB = AC$, angle $\angle A = 100^o$ and $BD$ bisector of angle $\angle B$. Prove that$$BC = BD + DA.$$


Given triangle $ABC$, $AL$ bisects angle $\angle BAC$ with $L$ on side $BC$. Lines $LR$ and $LS$ are parallel to $BA$ and $CA$ respectively, $R$ on side $AC$ and$ S$ on side $AB$, respectively. Through point $B$ draw a perpendicular on $AL$, intersecting $LR$ at $M$. If point $D$ is the midpoint of $BC$, prove that that the three points $A, M, D$ lie on a straight line.

For every triangle $ ABC$, let $ D,E,F$ be a point located on segment $ BC,CA,AB$, respectively. Let $ P$ be the intersection of $ AD$ and $ EF$. Prove that:
\[ \frac{AB}{AF}\times DC+\frac{AC}{AE}\times DB=\frac{AD}{AP}\times BC\]

Given a quadrilateral $ABCD$ inscribed in circle $\Gamma$.From a point P outside $\Gamma$, draw tangents $PA$ and $PB$ with $A$ and $B$ as touspoints. The line $PC$ intersects $\Gamma$ at point $D$. Draw a line through $B$ parallel to $PA$, this line intersects $AC$ and $AD$ at points $E$ and $F$ respectively. Prove that $BE = BF$.

Let $D, E, F$, be the touchpoints of the incircle in triangle $ABC$ with sides $BC, CA, AB$, respectively, . Also, let $AD$ and $EF$ intersect at $P$. Prove that$$\frac{AP}{AD} \ge 1 - \frac{BC}{AB + CA}$$.

Two circles intersect at points $A$ and $B$. The line $\ell$ through A intersects the circles at $C$ and $D$, respectively. Let $M, N$ be the midpoints of arc $BC$ and arc $BD$. which does not contain $A$, and suppose that $K$ is the midpoint of the segment $CD$ . Prove that $\angle MKN=90^o$.

Suppose the points $D, E, F$ lie on sides $BC, CA, AB$, respectively, so that $AD, BE, CF$ are the altitudes. Also, let $AD$ and $EF$ intersect at $P$. Prove that$$\frac{AP}{AD} \ge 1 - \frac{BC^2}{AB^2 + CA^2}$$

Given a convex quadrilateral $ABCD$, such that $OA = \frac{OB \cdot OD}{OC + CD}$ where $O$ is the intersection of the two diagonals. The circumcircle of triangle $ABC$ intersects $BD$ at point $Q$. Prove that $CQ$ bisects $\angle ACD$

Suppose the points $D, E, F$ lie on sides $BC, CA, AB$, respectively, so that $AD, BE, CF$ are angle bisectors. Define $P_1$, $P_2$, $P_3$ respectively as the intersection point of $AD$ with $EF$, $BE$ with $DF$, $CF$ with $DE$ respectively. Prove that
$$\frac{AD}{AP_1}+\frac{BE}{BP_2}+\frac{CF}{CP_3} \ge 6$$

Given triangle $ABC$. Let $A_1B_1$, $A_2B_2$,$ ...$, $A_{2008}B_{2008}$ be $2008$ lines parallel to $AB$ which divide triangle $ABC$ into $2009$ equal areas. Calculate the value of$$\big \lfloor \frac{A_1B_1}{2A_2B_2} + \frac{A_1B_1}{2A_3B_3} + ... + \frac{A_1B_1}{2A_{2008}B_{2008}} \rfloor$$

Given a triangle $ABC$ with incenter $I$ . It is known that $E_A$ is center of the ex-circle tangent to $BC$. Likewise, $E_B$ and $E_C$ are the centers of the ex-circles tangent to $AC$ and $AB$, respectively. Prove that $I$ is the orthocenter of the triangle $E_AE_BE_C$.

Given an acute triangle $ ABC$. The incircle of triangle $ ABC$ touches $ BC,CA,AB$ respectively at $ D,E,F$. The angle bisector of $ \angle A$ cuts $ DE$ and $ DF$ respectively at $ K$ and $ L$. Suppose $ AA_1$ is one of the altitudes of triangle $ ABC$, and $ M$ be the midpoint of $ BC$.
(a) Prove that $ BK$ and $ CL$ are perpendicular with the angle bisector of $ \angle BAC$.
(b) Show that $ A_1KML$ is a cyclic quadrilateral.

In triangle $ABC$, the incircle is tangent to $BC$ at $D$, to $AC$ at $E$, and to $AB$ at $F$. Prove that:
$$\frac{CE-EA}{\sqrt{AB}}+\frac{AF-FB}{\sqrt{BC}} +\frac{BD-DC}{\sqrt{CA}} \ge \frac{BD-DC}{\sqrt{AB}}
+\frac{CE-EA}{\sqrt{BC}} +\frac{AF-FB}{\sqrt{CA}}$$


In triangle $ABC$, let $D$ be the midpoint of $BC$, and $BE$, $CF$ are the altitudes. Prove that $DE$ and $DF$ are both tangents to the circumcircle of triangle $AEF$

Given an acute triangle $ABC$. The inscribed circle of triangle $ABC$ is tangent to $AB$ and $AC$ at $X$ and $Y$ respectively. Let $CH$ be the altitude. The perpendicular bisector of the segment $CH$ intersects the line $XY$ at $Z$. Prove that $\angle BZC = 90^o.$

Suppose $L_1$ is a circle with center $O$, and $L_2$ is a circle with center $O'$. The circles intersect at $ A$ and $ B$ such that $\angle OAO' = 90^o$. Suppose that point $X$ lies on the circumcircle of triangle $OAB$, but lies inside $L_2$. Let the extension of $OX$ intersect $L_1$ at $Y$ and $Z$. Let the extension of $O'X$ intersect $L_2$ at $W$ and $V$ . Prove that $\vartriangle XWZ$ is congruent with $\vartriangle  XYV$.

Given an acute triangle $ABC$ with circumcenter $O$ and orthocenter $H$. Let $K$ be a point inside $ABC$ which is not $O$ nor $H$. Point $L$ and $M$ are located outside the triangle $ABC$ such that $AKCL$ and $AKBM$ are parallelogram. At last, let $BL$ and $CM$ intersects at $N$, and let $J$ be the midpoint of $HK$. Show that $KONJ$ is also a parallelogram.

Raja Oktovin, Pekanbaru
Given an arbitrary triangle $ABC$, with $\angle A = 60^o$ and $AC < AB$. A circle with diameter $BC$, intersects $AB$ and $AC$ at $F$ and $E$, respectively. Lines $BE$ and $CF$ intersect at $D$. Let $\Gamma$ be the circumcircle of $BCD$, where the center of $\Gamma$ is $O$. Circle $\Gamma$ intersects the line $AB$ and the extension of $AC$ at $M$ and $N$, respectively. $MN$ intersects $BC$ at $P$. Prove that points $A$, $P$, $O$ lie on the same line.

Given an acute triangle $ABC$ with $AC>BC$ and the circumcenter of triangle $ABC$ is $O$. The altitude of triangle $ABC$ from $C$ intersects $AB$ and the circumcircle at $D$ and $E$, respectively. A line which passed through $O$ which is parallel to $AB$ intersects $AC$ at $F$. Show that the line $CO$, the line which passed through $F$ and perpendicular to $AC$, and the line which passed through $E$ and parallel with $DO$ are concurrent.

Fajar Yuliawan, Bandung
In triangle $ABC$, find the smallest possible value of$$|(\cot A + \cot B)(\cot B +\cot C)(\cot C + \cot A)|$$

Given an acute triangle $ABC$ and points $D$, $E$, $F$ on sides $BC$, $CA$ and $AB$, respectively. If the lines $DA$, $EB$ and $FC$ are the angle bisectors of triangle $DEF$, prove that the three lines are the altitudes of triangle $ABC$.

Given two circles $\Gamma_1$ and $\Gamma_2$ which intersect at points $A$ and $B$. A line through $A$ intersects $\Gamma_1$ and $\Gamma_2$ at points $C$ and $D$, respectively. Let $M$ be the midpoint of arc $BC$ in $\Gamma_1$ ,which does not contains $A$, and $N$ is the midpoint of the arc $BD$ in $\Gamma_2$, which does not contain $A$. If $K$ is the midpoint of $CD$, prove that $\angle MKN = 90^o.$

Given two circles with one of the centers of the circle is on the other circle. The two circles intersect at two points $C$ and $D$. The line through $D$ intersects the two circles again at $A$ and $ B$. Let $H$ be the midpoint of the arc $AC$ that does not contain $D$ and the segment $HD$ intersects circle that does not contain $H$ at point $E$. Show that $E$ is the center of the incircle of the triangle $ACD$.

Given triangle $ABC$ and point $P$ on the circumcircle of triangle $ABC$. Suppose the line $CP$ intersects line $AB$ at point $E$ and line $BP$ intersect line $AC$ at point $F$. Suppose also the perpendicular bisector of $AB$ intersects $AC$ at point $K$ and the perpendicular bisector of $AC$ intersects $AB$ at point $J$. Prove that$$\left( \frac{CE}{BF}\right)^2= \frac{AJ \cdot  JE }{ AK \cdot  KF}$$.

The inscribed circle of the $ABC$ triangle has center  $I$ and touches to $BC$ at $X$. Suppose the $AI$ and $BC$ lines intersect at $L$, and $D$ is the reflection of $L$ wrt $X$. Points $E$ and $F$ respectively are the result of a reflection of $D$ wrt to lines $CI$ and $BI$ respectively. Show that quadrilateral $BCEF$ is cyclic .

2014 INAMO Shortlist G2 (problem 6)
Let $ABC$ be a triangle. Suppose $D$ is on $BC$ such that $AD$ bisects $\angle BAC$. Suppose $M$ is on $AB$ such that $\angle MDA = \angle ABC$, and $N$ is on $AC$ such that $\angle NDA = \angle ACB$. If $AD$ and $MN$ intersect on $P$, prove that $AD^3 = AB \cdot AC \cdot AP$.

2014 INAMO Shortlist G3 (problem 3)
Let $ABCD$ be a trapezoid (quadrilateral with one pair of parallel sides) such that $AB < CD$. Suppose that $AC$ and $BD$ meet at $E$ and $AD$ and $BC$ meet at $F$. Construct the parallelograms $AEDK$ and $BECL$. Prove that $EF$ passes through the midpoint of the segment $KL$.

2014 INAMO Shortlist G4
Given an acute triangle $ABC$ with $AB <AC$. Points $P$ and $Q$ lie on the angle bisector of $\angle BAC$ so that $BP$ and $CQ$ are perpendicular on that angle bisector. Suppose that point $E, F$ lie respectively at sides $AB$ and $AC$ respectively, in such a way that $AEPF$ is a kite. Prove that the lines $BC, PF$, and $QE$ intersect at one point.

2014 INAMO Shortlist G5
Given a cyclic quadrilateral $ABCD$. Suppose $E, F, G, H$ are respectively the midpoint of the sides $AB, BC, CD, DA$. The line passing through $G$ and perpendicular on $AB$ intersects the line passing through $H$ and perpendicular on $BC$ at point $K$. Prove that $\angle EKF = \angle  ABC$.

2014 INAMO Shortlist G6
Given an $ABC$ acute triangle with $O$ the center of the circumscribed circle. Suppose that $\omega$ is a circle that is tangent to the line $AO$ at point $A$ and also tangent to the line $BC$. Prove that  $\omega$ is also tangent to the circumcircle of the triangle $BOC$.

2015 INAMO Shortlist G1
Given a cyclic quadrilateral $ABCD$ so that $AB = AD$ and $AB + BC <CD$. Prove that the angle $ABC$ is more than $120$ degrees.

2015 INAMO Shortlist G2
Two circles that are not equal are tangent externally at point $R$. Suppose point $P$ is the intersection of the external common tangents of the two circles. Let $A$ and $B$ are two points on different circles so that $RA$ is perpendicular to $RB$. Show that the line $AB$ passes through $P$.

2015 INAMO Shortlist G3
Given $ABC$ triangle with incircle $L_1$ and circumcircle $L_2$. If points $X, Y, Z$ lie on $L_2$, such that $XY, XZ$ are tangent to $L_1$, then prove that $YZ$ is also tangent to $L_1$.

2015 INAMO Shortlist G4
Given an isosceles triangle $ABC$ with $AB = AC$, suppose $D$ is the midpoint of the $AC$. The circumcircle of the $DBC$ triangle intersects the altitude from $A$ at point $E$ inside the triangle  $ABC$, and the circumcircle of the triangle $AEB$ cuts the side  $BD$ at point $F$. If $CF$ cuts $AE$ at point $G$, prove that $AE = EG$.

2015 INAMO Shortlist G5 
Let $ABC$ be an acute triangle. Suppose that circle $\Gamma_1$ has it's center on the side $AC$ and is tangent to the sides $AB$ and $BC$, and circle $\Gamma_2$ has it's center on the side  $AB$ and is tangent to the sides $AC$ and $BC$. The circles  $\Gamma_1$ and $ \Gamma_2$ intersect at two points $P$ and $Q$. Show that if $A, P, Q$ are collinear, then $AB = AC$.

2015 INAMO Shortlist G6 (problem 6)
Let $ABC$ be an acute angled triangle with circumcircle $O$. Line $AO$ intersects the circumcircle of triangle  $ABC$ again at point $D$. Let $P$ be a point on the side  $BC$. Line passing through $P$ perpendicular to $AP$ intersects lines  $DB$ and $DC$ at $E$ and $F$ respectively . Line passing through $D$ perpendicular to $BC$ intersects $EF$ at point $Q$. Prove that $EQ = FQ$ if and only if $BP = CP$.

2015 INAMO Shortlist G7 (problem 3)
Given an acute triangle $ABC$. $\Gamma _{B}$ is a circle that passes through $AB$, tangent to $AC$ at $A$ and centered at $O_{B}$. Define $\Gamma_C$ and $O_C$ the same way. Let the altitudes of $\triangle ABC$ from $B$ and $C$ meets the circumcircle of $\triangle ABC$ at $X$ and $Y$, respectively. Prove that $A$, the midpoint of $XY$ and the midpoint of $O_{B}O_{C}$ is collinear.

$ABC$ is an acute triangle with $AB> AC$.  $\Gamma_B$ is a circle that passes through $A,B$ and is tangent to $AC$ on $A$. Define similar for  $ \Gamma_C$. Let $D$ be the intersection  $\Gamma_B$ and  $\Gamma_C$ and $M$ be the midpoint of $BC$. $AM$ cuts  $\Gamma_C$ at $E$. Let $O$ be the center of the circumscibed circle of the triangle ABC. Prove that the circumscibed circle of the triangle $ODE$ is tangent to $\Gamma_B$.


Let $ABCD$ be a square with side $1$, with $P$ and $Q$ being points on the sides $AB$ and $BC$, respectively, such that $PB + BQ = 1$. If $PC$ intersects $AQ$ at $E$, prove that the line $DE$ is perpendicular to the line $PQ$.

$ABC$ is an acute triangle with $D, E$ and $F$ being the feet of the altitudes of the triangle $ABC$ on sides $BC, AC$ and $AB$ respectively. Let $P, Q$ and $R$ be the midpoints of $DE, EF$ and $FD$ respectively. Then show that the lines passing through $P, Q$, and $R$ perpendicular on sides $AB, BC$, and $CA$, respectively, intersect at a single point.

Let $\vartriangle ABC$ be an isosceles triangle with $\angle BAC = 100^o$. Let $D, E$ be points on ray $\overrightarrow{AB}$ so that $BC = AD = BE$. Show that $BC \cdot  DE = BD \cdot CE$

Let $ABC$ be an isosceles triangle with $A$ being the apex, less than $60^o$ with $D$ the point on the side $AC$ , such that $\angle DBC =  \angle BAC$. Let $L_1$ be a line passing through point $A$ and parallel to side $BC$. Let $L_2$ be the perpendicular bisector of side $BD$. $L_1$ and $L_2$ intersect at point $E$. show that the $EC$ is bisected by $AB$.

Let $ABC$ be a triangle with circumcircle $\Gamma$. Let the tangents of circle $\Gamma$ at points $B$ and $C$ intersect at point $D$ . Let $M$ be the point on the side $BC$ such that $\angle BAM = \angle CAD$. Prove that the center of circle $\Gamma$ lies on the line $MD$.

Let A$BC$ be a triangle with $A$ right angle and $D$ is a point on the side $BC$ such that $AD$ is perpendicular to the side $BC$. Let $W_1$ and $W_2$ are the centers of the incircles of the triangles $ABD$ and $ADC$ respectively. Line $W_1W_2$ intersects $AB$ at $X$ and $AC$ at $Y$. Prove that $AX = AD = AY$.

Let $ABC$ be an acute triangle with $E$ and $F$ on sides $AB$ and $AC$ respectively, and $O$ be it's circumcenter. Let $AO$ intersect $BC$ at point $D$. Let the perpendicular from point $D$ on sides $AB$ and $AC$ intersect them at points $M,N$ respectively. Let the perpendicular on the side $BC$ from points $E,F,M,N$ intersect it at points $E',F',M',N'$ respectively. Prove that $A, D, E, F$ lie on the same circle if and only if $E'F '= M'N'$.

Let $ABCD$ be a convex quadrilateral with shortest side $AB$ and longest side $CD$, and suppose that $AB < CD$. Show that there is a point $E \ne C, D$ on segment $CD$ with the following property:
For all points $P \ne E$ on side $CD$, if we define $O_1$ and $O_2$ to be the circumcenters of $\vartriangle APD$ and $\vartriangle  BPE$ respectively, then the length of $O_1O_2$ does not depend on $P$.


No comments:

Post a Comment