drop down menu

India TST (IMO Training Camp) 2001-19 (IMOTC) +EGMO TST -21,-22 52p (-08)

geometry problems from Indian Team Selection Tests (TST), IMO Training Camp (IMOTC) and India EMGO TST with aops links in the names
(only those not in IMO Shortlist)
collected inside aops here


IMOTC 2001- 19
(missing 2008) 

In a triangle $ABC$ with incircle $\omega$ and incenter $I$ , the segments $AI$ , $BI$ , $CI$ cut $\omega$ at $D$ , $E$ , $F$ , respectively. Rays $AI$ , $BI$ , $CI$ meet the sides $BC$ , $CA$ , $AB$ at $L$ , $M$ , $N$ respectively. Prove that: $AL+BM+CN \leq 3(AD+BE+CF)$. When does equality occur?

If on $ \triangle ABC$, trinagles $ AEB$ and $ AFC$ are constructed externally such that $ \angle AEB=2 \alpha$, $ \angle AFB= 2 \beta$. $ AE=EB$, $ AF=FC$. COnstructed externally on $ BC$ is triangle $ BDC$ with $ \angle DBC= \beta$ , $ \angle BCD= \alpha$. Prove that 
1. $ DA$ is perpendicular to $ EF$.
2. If $ T$ is the projection of $ D$ on $ BC$, then prove that $ \frac{DA}{EF}= 2 \frac{DT}{BC}$.


Let $ABCD$ be a rectangle, and let $\omega$ be a circular arc passing through the points $A$ and $C$. Let $\omega_{1}$ be the circle tangent to the lines $CD$ and $DA$ and to the circle $\omega$, and lying completely inside the rectangle $ABCD$. Similiarly let $\omega_{2}$ be the circle tangent to the lines $AB$ and $BC$ and to the circle $\omega$, and lying completely inside the rectangle $ABCD$. Denote by $r_{1}$ and $r_{2}$ the radii of the circles $\omega_{1}$ and $\omega_{2}$, respectively, and by $r$ the inradius of triangle $ABC$.
(a) Prove that $r_{1}+r_{2}=2r$.
(b) Prove that one of the two common internal tangents of the two circles $\omega_{1}$ and $\omega_{2}$ is parallel to the line $AC$ and has the length $\left|AB-AC\right|$.


Let $A,B$ and $C$ be three points on a line with $B$ between $A$ and $C$. Let $\Gamma_1,\Gamma_2, \Gamma_3$ be semicircles, all on the same side of $AC$ and with $AC,AB,BC$ as diameters, respectively. Let $l$ be the line perpendicular to $AC$ through $B$. Let $\Gamma$ be the circle which is tangent to the line $l$, tangent to $\Gamma_1$ internally, and tangent to $\Gamma_3$ externally. Let $D$ be the point of contact of $\Gamma$ and $\Gamma_3$. The diameter of $\Gamma$ through $D$ meets $l$ in $E$. Show that $AB=DE$.

Given two distinct circles touching each other internally, show how to construct a triangle with the inner circle as its incircle and the outer circle as its nine point circle.

Let $ABC$ and $PQR$ be two triangles such that
(a) $P$ is the mid-point of $BC$ and $A$ is the midpoint of $QR$.
(b) $QR$ bisects $\angle BAC$ and $BC$ bisects $\angle QPR$
Prove that $AB+AC=PQ+PR$.


Let $A',B',C'$ be the midpoints of the sides $BC, CA, AB$, respectively, of an acute non-isosceles triangle $ABC$, and let $D,E,F$ be the feet of the altitudes through the vertices $A,B,C$ on these sides respectively. Consider the arc $DA'$ of the nine point circle of triangle $ABC$ lying outside the triangle. Let the point of trisection of this arc closer to $A'$ be $A''$. Define analogously the points $B''$ (on arc $EB'$) and $C''$(on arc $FC'$). Show that triangle $A''B''C''$ is equilateral.

Let $ABC$ be a triangle, and let $r, r_1, r_2, r_3$ denoted its inradius and the exradii opposite the vertices $A,B,C$, respectively. Suppose $a>r_1, b>r_2, c>r_3$. Prove that
(a) triangle $ABC$ is acute,
(b) $a+b+c>r+r_1+r_2+r_3$.


Let $ABCD$ be a cyclic quadrilateral. Let $P$, $Q$, $R$ be the feet of the perpendiculars from $D$ to the lines $BC$, $CA$, $AB$, respectively. Show that $PQ=QR$ if and only if the bisectors of $\angle ABC$ and $\angle ADC$ are concurrent with $AC$.

Let $ABC$ be an acute-angled triangle and $\Gamma$ be a circle with $AB$ as diameter intersecting $BC$ and $CA$ at $F ( \not= B)$ and $E (\not= A)$ respectively. Tangents are drawn at $E$ and $F$ to $\Gamma$ intersect at $P$. Show that the ratio of the circumcentre of triangle $ABC$ to that if $EFP$ is a rational number.


Let $ABC$ be a triangle with all angles $\leq 120^{\circ}$. Let $F$ be the Fermat point of triangle $ABC$, that is, the interior point of $ABC$ such that $\angle AFB = \angle BFC = \angle CFA = 120^\circ$. For each one of the three triangles $BFC$, $CFA$ and $AFB$, draw its Euler line - that is, the line connecting its circumcenter and its centroid. Prove that these three Euler lines pass through one common point.

Remark: The Fermat point $F$ is also known as the  first Fermat point  or the first Toricelli point of triangle $ABC$.


Floor van Lamoen 
Let $ABCD$ be a convex quadrilateral. The lines parallel to $AD$ and $CD$ through the orthocentre $H$ of $ABC$ intersect $AB$ and $BC$ Crespectively at $P$ and $Q$. prove that the perpendicular through $H$ to th eline $PQ$ passes through the orthocentre of triangle $ACD$

For a given triangle $ABC$, let $X$ be a variable point on the line $BC$ such that the point $C$ lies between the points $B$ and $X$. Prove that the radical axis of the incircles of the triangles $ABX$ and $ACX$ passes through a point independent of $X$.

Let $ABC$ be a triangle and let $P$ be a point in the plane of $ABC$ that is inside the region of the angle $BAC$ but outside triangle $ABC$.
(a) Prove that any two of the following statements imply the third.
(i) the circumcentre of triangle $PBC$ lies on the ray $\stackrel{\to}{PA}$.
(ii) the circumcentre of triangle $CPA$ lies on the ray $\stackrel{\to}{PB}$.
(iii) the circumcentre of triangle $APB$ lies on the ray $\stackrel{\to}{PC}$.
(b) Prove that if the conditions in (a) hold, then the circumcentres of triangles $BPC,CPA$ and $APB$ lie on the circumcircle of triangle $ABC$.

Let $ABC$ be an equilateral triangle, and let $D,E$ and $F$ be points on $BC,BA$ and $AB$ respectively. Let $\angle BAD= \alpha, \angle CBE=\beta$ and $\angle ACF =\gamma$. Prove that if $\alpha+\beta+\gamma \geq 120^\circ$, then the union of the triangular regions $BAD,CBE,ACF$ covers the triangle $ABC$.


Show that in a non-equilateral triangle, the following statements are equivalent:
a) The angles of the triangle are in arithmetic progression.
b) The common tangent to the Nine-point circle and the Incircle is parallel to the Euler Line.


2008 problems are missing from aops

Let $ ABC$ be a triangle with $ \angle A = 60^{\circ}$.Prove that if $ T$ is point of contact of Incircle And Nine-Point Circle, Then $ AT = r$, $ r$ being inradius.


Let $ \gamma$ be circumcircle of $ \triangle ABC$.Let $ R_a$ be radius of circle touching $ AB,AC$&$ \gamma$ internally.Define $ R_b,R_c$ similarly. Prove That $ \frac {1}{aR_a} + \frac {1}{bR_b} +\frac {1}{cR_c} = \frac {r^2}{sabc}$.


Let $ABC$ be a triangle in which $BC<AC$. Let $M$ be the mid-point of $AB$, $AP$ be the altitude from $A$ on $BC$, and $BQ$ be the altitude from $B$ on to $AC$. Suppose that $QP$ produced meets $AB$ (extended) at $T$. If $H$ is the orthocenter of $ABC$, prove that $TH$ is perpendicular to $CM$.


Let $ABCD$ be a cyclic quadrilaterla and let $E$ be the point of intersection of its diagonals $AC$ and $BD$. Suppose $AD$ and $BC$ meet in $F$. Let the midpoints of $AB$ and $CD$ be $G$ and $H$ respectively.  If $\Gamma $ is the circumcircle of triangle $EGH$, prove that $FE$ is tangent to $\Gamma $.

Let $ABC$ be a triangle each of whose angles is greater than $30^{\circ}$. Suppose a circle centered with $P$ cuts segments $BC$ in $T,Q; CA$ in $K,L$ and $AB$ in $M,N$ such that they are on a circle in counterclockwise direction in that order.Suppose further $PQK,PLM,PNT$ are equilateral. Prove that:
a) The radius of the circle is $\frac{2abc}{a^2+b^2+c^2+4\sqrt{3}S}$ where $S$ is area.
b)  $a\cdot AP=b\cdot BP=c\cdot PC.$ 


The cirumcentre of the cyclic quadrilateral $ABCD$ is $O$. The second intersection point of the circles $ABO$ and $CDO$, other than $O$, is $P$, which lies in the interior of the triangle $DAO$. Choose a point $Q$ on the extension of $OP$ beyond $P$, and a point $R$ on the extension of $OP$ beyond $O$. Prove that $\angle QAP=\angle OBR$ if and only if $\angle PDQ=\angle RCO$.

A quadrilateral $ABCD$ without parallel sides is circumscribed around a circle with centre $O$. Prove that $O$ is a point of intersection of middle lines of quadrilateral $ABCD$ (i.e. barycentre of points $A,\,B,\,C,\,D$) iff $OA\cdot OC=OB\cdot OD$.

Let $ABC$ be an isosceles triangle with $AB=AC$. Let $D$ be a point on the segment $BC$ such that $BD=2DC$. Let $P$ be a point on the segment $AD$ such that $\angle BAC=\angle BPD$. Prove that $\angle BAC=2\angle DPC$.

Let $ABCD$ be a trapezium with $AB\parallel CD$. Let $P$ be a point on $AC$ such that $C$ is between $A$ and $P$; and let $X, Y$ be the midpoints of $AB, CD$ respectively. Let $PX$ intersect $BC$ in $N$ and $PY$ intersect $AD$ in $M$. Prove that $MN\parallel AB$.

In a triangle $ABC$, with $\widehat{A} > 90^\circ$, let $O$ and $H$ denote its circumcenter and orthocenter, respectively. Let $K$ be the reflection of $H$ with respect to $A$. Prove that $K, O$ and $C$ are collinear if and only if $\widehat{A} - \widehat{B} = 90^\circ$.

In a triangle $ABC$, let $I$ denote its incenter. Points $D, E, F$ are chosen on the segments $BC, CA, AB$, respectively, such that $BD + BF = AC$ and $CD + CE = AB$. The circumcircles of triangles $AEF, BFD, CDE$ intersect lines $AI, BI, CI$, respectively, at points $K, L, M$ (different from $A, B, C$), respectively. Prove that $K, L, M, I$ are concyclic.

In a triangle $ABC$, with $AB \ne BC$, $E$ is a point on the line $AC$ such that $BE$ is perpendicular to $AC$. A circle passing through $A$ and touching the line $BE$ at a point $P \ne B$ intersects the line $AB$ for the second time at $X$. Let $Q$ be a point on the line $PB$ different from $P$ such that $BQ = BP$. Let $Y$ be the point of intersection of the lines $CP$ and $AQ$. Prove that the points $C, X, Y, A$ are concyclic if and only if $CX$ is perpendicular to $AB$.

Let $ABCD$ by a cyclic quadrilateral with circumcenter $O$. Let $P$ be the point of intersection of the diagonals $AC$ and $BD$, and $K, L, M, N$ the circumcenters of triangles $AOP, BOP$, $COP, DOP$, respectively. Prove that $KL = MN$.
In a triangle $ABC$ with $B = 90^\circ$, $D$ is a point on the segment $BC$ such that the inradii of triangles $ABD$ and $ADC$ are equal. If $\widehat{ADB} = \varphi$ then prove that $\tan^2 (\varphi/2) = \tan (C/2)$.

In a triangle $ABC$, let $I$ be its incenter; $Q$ the point at which the incircle touches the line $AC$; $E$ the midpoint of $AC$ and $K$ the orthocenter of triangle $BIC$. Prove that the line $KQ$ is perpendicular to the line $IE$.

In a triangle $ABC$, with $AB\neq AC$ and $A\neq 60^{0},120^{0}$, $D$ is a point on line $AC$ different from $C$. Suppose that the circumcentres and orthocentres of triangles $ABC$ and $ABD$ lie on a circle. Prove that $\angle ABD=\angle ACB$.

In a triangle $ABC$, points $X$ and $Y$ are on $BC$ and $CA$ respectively such that $CX=CY$,$AX$ is not perpendicular to $BC$ and $BY$ is not perpendicular to $CA$.Let $\Gamma$ be the circle with $C$ as centre and $CX$ as its radius.Find the angles of triangle $ABC$ given that the orthocentres of triangles $AXB$ and $AYB$ lie on $\Gamma$.

Let $ABCD$ be a convex quadrilateral and let the diagonals $AC$ and $BD$ intersect at $O$. Let $I_1, I_2, I_3, I_4$ be respectively the incentres of triangles $AOB, BOC, COD, DOA$. Let $J_1, J_2, J_3, J_4$ be respectively the excentres of triangles $AOB, BOC, COD, DOA$ opposite $O$. Show that $I_1, I_2, I_3, I_4$ lie on a circle if and only if $J_1, J_2, J_3, J_4$ lie on a circle.

2015 India TST2 P1
In a triangle $ABC$, a point $D$ is on the segment $BC$, Let $X$ and $Y$ be the incentres of triangles $ACD$ and $ABD$ respectively. The lines $BY$ and $CX$ intersect the circumcircle of triangle $AXY$ at $P\ne Y$ and $Q\ne X$, respectively. Let $K$ be the point of intersection of lines $PX$ and $QY$. Suppose $K$ is also the reflection of $I$ in $BC$ where $I$ is the incentre of triangle $ABC$. Prove that $\angle BAC=\angle ADC=90^{\circ}$.

Let $ABC$ be a triangle in which $CA>BC>AB$. Let $H$ be its orthocentre and $O$ its circumcentre. Let $D$ and $E$ be respectively the midpoints of the arc $AB$ not containing $C$ and arc $AC$ not containing $B$. Let $D'$ and $E'$ be respectively the reflections of $D$ in $AB$ and $E$ in $AC$. Prove that $O, H, D', E'$ lie on a circle if and only if $A, D', E'$ are collinear.

2016 India TST4 P1
Let $ABC$ be an acute triangle with circumcircle $\Gamma$. Let $A_1,B_1$ and $C_1$ be respectively the midpoints of the arcs $BAC,CBA$ and $ACB$ of $\Gamma$. Show that the inradius of triangle $A_1B_1C_1$ is not less than the inradius of triangle $ABC$.

2016 India TST Practice Test1 P1
An acute-angled $ABC \ (AB<AC)$ is inscribed into a circle $\omega$. Let $M$ be the centroid of $ABC$, and let $AH$ be an altitude of this triangle. A ray $MH$ meets $\omega$ at $A'$. Prove that the circumcircle of the triangle $A'HB$ is tangent to $AB$.

2018 India TST4 P1
Let $ABC$ be an acute angled triangle with incenter $I$. Line perpendicular to $BI$ at $I$ meets $BA$ and $BC$ at points $P$ and $Q$ respectively. Let $D, E$ be the incenters of $\triangle BIA$ and $\triangle BIC$ respectively. Suppose $D,P,Q,E$ lie on a circle. Prove that $AB=BC$.

2018 India TST Practice Test1 P3
Let $ABCD$ be a cyclic quadrilateral inscribed in circle $\Omega$ with $AC \perp BD$. Let $P=AC \cap BD$ and $W,X,Y,Z$ be the projections of $P$ on the lines $AB, BC, CD, DA$ respectively. Let $E,F,G,H$ be the mid-points of sides $AB, BC, CD, DA$ respectively.
(a) Prove that $E,F,G,H,W,X,Y,Z$ are concyclic.
(b) If $R$ is the radius of $\Omega$ and $d$ is the distance between its centre and $P$, then find the radius of the circle in (a) in terms of $R$ and $d$.



In an acute triangle $ABC$, points $D$ and $E$ lie on side $BC$ with $BD<BE$. Let $O_1, O_2, O_3, O_4, O_5, O_6$ be the circumcenters of triangles $ABD, ADE, AEC, ABE, ADC, ABC$, respectively. Prove that $O_1, O_3, O_4, O_5$ are con-cyclic if and only if $A, O_2, O_6$ are collinear.


2018 India TST1 P2
Let $A,B,C$ be three points in that order on a line $\ell$ in the plane, and suppose $AB>BC$. Draw semicircles $\Gamma_1$ and $\Gamma_2$ respectively with $AB$ and $BC$ as diameters, both on the same side of $\ell$. Let the common tangent to $\Gamma_1$ and $\Gamma_2$ touch them respectively at $P$ and $Q$, $P\ne Q$. Let $D$ and $E$ be points on the segment $PQ$ such that the semicircle $\Gamma_3$ with $DE$ as diameter touches $\Gamma_2$ in $S$ and $\Gamma_1$ in $T$.
Prove that $A,C,S,T$ are concyclic.
Prove that $A,C,D,E$ are concyclic.

Let $ABC$ be a triangle and $AD,BE,CF$ be cevians concurrent at a point $P$. Suppose each of the quadrilaterals $PDCE,PEAF$ and $PFBD$ has both circumcircle and incircle. Prove that $ABC$ is equilateral and $P$ coincides with the center of the triangle.

2018 India TST Practice Test1 P1
Let $\Delta ABC$ be an acute triangle. $D,E,F$ are the touch points of incircle with $BC,CA,AB$ respectively. $AD,BE,CF$ intersect incircle at $K,L,M$ respectively. If,$\sigma = \frac{AK}{KD} + \frac{BL}{LE} + \frac{CM}{MF}$, $\tau = \frac{AK}{KD}.\frac{BL}{LE}.\frac{CM}{MF}$. Then prove that $\tau = \frac{R}{16r}$. Also prove that there exists integers $u,v,w$ such that, $uvw \neq 0$, $u\sigma + v\tau +w=0$.

2018 India TST Practice Test2 P1
Let $ABCD$ be a convex quadrilateral inscribed in a circle with center $O$ which does not lie on either diagonal. If the circumcentre of triangle $AOC$ lies on the line $BD$, prove that the circumcentre of triangle $BOD$ lies on the line $AC$.


In an acute angled triangle $ABC$ with $AB < AC$, let $I$ denote the incenter and $M$ the midpoint of side $BC$. The line through $A$ perpendicular to $AI$ intersects the tangent from $M$ to the incircle (different from line $BC$) at a point $P$> Show that $AI$ is tangent to the circumcircle of triangle $MIP$.

by Tejaswi Navilarekallu

Let $ABC$ be an acute-angled scalene triangle with circumcircle $\Gamma$ and circumcenter $O$. Suppose $AB < AC$. Let $H$ be the orthocenter and $I$ be the incenter of triangle $ABC$. Let $F$ be the midpoint of the arc $BC$ of the circumcircle of triangle $BHC$, containing $H$. Let $X$ be a point on the arc $AB$ of $\Gamma$ not containing $C$, such that $\angle AXH = \angle AFH$. Let $K$ be the circumcenter of triangle $XIA$. Prove that the lines $AO$ and $KI$ meet on $\Gamma$.

by Anant Mudgal
Let $ABC$ be a triangle with $\angle A=\angle C=30^{\circ}.$ Points $D,E,F$ are chosen on the sides $AB,BC,CA$ respectively so that $\angle BFD=\angle BFE=60^{\circ}.$ Let $p$ and $p_1$ be the perimeters of the triangles $ABC$ and $DEF$, respectively. Prove that $p\le 2p_1.$

Let the points $O$ and $H$ be the circumcenter and orthocenter of an acute angled triangle $ABC.$ Let $D$ be the midpoint of $BC.$ Let $E$ be the point on the angle bisector of $\angle BAC$ such that $AE\perp HE.$ Let $F$ be the point such that $AEHF$ is a rectangle. Prove that $D,E,F$ are collinear.

INDIA EGMO TST 2021-22

In acute $\triangle ABC$ with circumcircle $\Gamma$ and incentre $I$, the incircle touches side $AB$ at $F$. The external angle bisector of $\angle ACB$ meets ray $AB$ at $L$. Point $K$ lies on the arc $CB$ of $\Gamma$ not containing $A$, such that $\angle CKI=\angle IKL$. Ray $KI$ meets $\Gamma$ again at $D\ne K$. Prove that $\angle ACF =\angle DCB$.

Let $I$ be incentre of scalene $\triangle ABC$ and let $L$ be midpoint of arc $BAC$. Let $M$ be midpoint of $BC$ and let the line through $M$ parallel to $AI$ intersect $LI$ at point $P$. Let $Q$ lie on $BC$ such that $PQ\perp LI$. Let $S$ be midpoint of $AM$ and $T$ be midpoint of $LI$. Prove that $IS\perp BC$ if and only if $AQ\perp ST$.
by Mahavir Gandhi

Let $I$ and $I_A$ denote the incentre and excentre opposite to $A$ of scalene $\triangle ABC$ respectively. Let $A'$ be the antipode of $A$ in $\odot (ABC)$ and $L$ be the midpoint of arc $(BAC)$. Let $LB$ and $LC$ intersect $AI$ at points $Y$ and $Z$ respectively. Prove that $\odot (LYZ)$ is tangent to $\odot (A'II_A)$.
by Mahavir Gandhi

No comments:

Post a Comment