Let $ABC$ be an isosceles triangle with $AB=AC$. On the extension of the side ${CA}$ we consider the point ${D}$ such that ${AD<AC}$. The perpendicular bisector of the segment ${BD}$ meets the internal and the external bisectors of the angle $\angle BAC$ at the points ${E}$ and ${Z}$, respectively. Prove that the points ${A, E, D, Z}$ are concyclic.
olympiad geometry problems with aops links
geometry articles, books, magazines, shortlists for Juniors and Seniors
problem collections with solutions from National, Regional and International Mathematical Olympiads
latest added on the right menu
Σελίδες
- geo + mock oly
- Iranian 2014-22 (IGO) 121p
- Sharygin 2005-22 805p
- Moscow Oral Geo 2003-22 228p
- Yasinsky 2017-21 98p
- Mathley 80p
- J-L Ayme
- TOT conf
- articles, collections
- books
- geo mags
- Quantum EN
- In the World of Mathematics
- M. Excalibur
- MR
- RMM
- Balkan BMO SL 2007- 107p
- ELMO 2009- SL 71p
- JBMO 1997- SL 130p
- geo shortlists
- UK USA Canada
- Crux
- IMO 1959 - 2021 116p
- IMO ISL 1968-92 186p
- IMO ISL 1993- 219p
- IMO ILL 1966-72 168p
- olympiad problems + solutions
- ex-USSR
- Juniors [104]
- new proofs
drop down menu
- menu
- IMO
- SHL
- Balkan BMO Shortlist
- Baltic Way Shortlist
- CentroAmerican Shortlist
- Cono Sur Shortlist
- ELMO Shortlist
- IberoAmerican Shortlist
- JBMO Shortlist
- other geo shortlists
- Geo Oly
- Adygea Teachers' Geometry
- Discord Geometry Olympiad (DGO)
- Iranian Geometry (IGO)
- Mexican Geometry Olympiad
- Moscow Oral Geometry
- Novosibirsk Oral Geometry (Russia)
- Sharygin Geometry
- Ukrainian Geometry 2017,2020
- Yasinsky Geometry
- Geometry Mathley 2011-12
- Geolympiad 2015 (aops)
- other geo olympiads + mock geo contests
- International
- Arab Math Olympiad
- Austrian-Polish
- Asian Pacific
- Balkan (BMO)
- Balkan Shortlist (BMO SHL)
- Baltic Way (BW)
- Baltic Way Shortlist (BW SHL)
- Benelux (BxMO)
- Caucasus (Russia)
- Centroamerican (OMCC)
- Centroamerican Shortlist (OMCC SHL)
- Cono Sur / Southern Cone (OMCS)
- Cono Sur Shortlist (OMCS SHL)
- Czech-Polish-Slovak Match (CPS)
- Czech-Polish-Slovak Junior Match (CPSJ)
- European Girls (EGMO)
- European Mathematical Cup (EMC)
- Final Mathematical Cup (FMC)
- Francophone (OFM)
- Formula of Unity / Third Millennium (FdI)
- Gulf Mathematical Olympiad (GMO)
- Hungary - Israel
- Iberoamerican (OIM)
- Iberoamerican Shortlist (OIM SHL)
- Istmo Centroamericano
- JBMO & Shortlist
- Lusophon / Portuguese Language (OMCPLP)
- May Olympiad (Mayo)
- Mediterranean (MMC)
- Metropolises (IOM) (Russia)
- Middle European (MEMO)
- Nordic (NMC)
- PanAmerigan Girls MO (PAGMO)
- Pan African (PAMO)
- Rioplatense (OMR)
- Romanian Master of Mathematics (RMM)
- Silk Road (SRMC) (Kazakhstan)
- Tournament of Towns 1980-97 (ToT)
- Tournament of Towns 1998- (ToT)
- Tuymaada (Russia)
- UNESCO Competition
- Zhautykov (Kazakhstan)
- TST
- Albanians Cup in Mathematics
- Argentina TST
- Argentina Training Lists
- Belarus TST
- Bosnia & Herzegovina TST
- Brazil TST
- Brazil Training Lists
- British TST
- Bulgaria TST
- Chile TST
- China TST
- China Hong Kong (CHKMO)
- Croatia TST
- Cyprus TST
- France TST
- Ecuador TST
- ELMO Shortlist
- Estonia TST
- Germany TST
- Georgia TST
- Greece TST
- Hong Kong TST
- India TST (IMOTC)
- Indonesia TST
- Iran TST
- Italy TST
- Kosovo TST
- Korea North TST
- Korea South Winter Camp
- Latvia TST
- Lithuania : Grand Duchy
- Lithuania TST
- Macedonia North TST
- Mathematical Ashes
- Moldova TST
- Netherlands TST
- Peru TST
- Puerto Rico TST
- Romania TST
- SAFEST Olympiad
- Saudi Arabia TST
- Serbia TST
- Singapore TST
- Switzerald TST
- Taiwan APMO preliminary
- Taiwan TST
- Thailand TST
- Turkey TST
- Ukraine TST
- USA TST
- USA TSTST
- Vietnam TST
- National
- All - Russian 1993- (ARO)
- All - Soviet Union (ASU) 1961-92
- Argentina (OMA)
- Armenia
- Australia (AMO)
- Austria Beginners
- Austria Federal, part 1
- Austria Federal, part 2
- Austria Regional
- Austria Junior Regional
- Belarus
- Belgium Flanders (VWO)
- Belgium Flanders Juniors (JWO)
- Belgium OMB
- Belgium OMB Juniors
- Bosnia & Herzegovina Regional
- Bosnia & Herzegovina JBMO TST
- Bulgaria JBMO TST
- Brazil (OBM)
- Brazilian Girls in Mathematics Tournament
- British (BrMO)
- Bulgaria
- Canada Junior CJMO
- Canada (CMO)
- Canadian MO Qual. Repêchage (CMOQR)
- Chile
- China (CMO)
- China Girls (CGMO)
- China Northern (CNMO)
- China 2nd Round T2
- China South East
- China Western (CWMI)
- Croatia
- Croatia Junior
- Czech & Slovak MO, III A
- Denmark (Mohr)
- Ecuador (OMEC)
- Estonia
- Estonia Open
- Finland (FHSMC)
- France (Fall Animath Cup)
- France JBMO TST
- Germany (De_MO)
- Germany Federal (BWM)
- Greece
- Greece Junior
- Greece JBMO TST
- Hungary (Kürschák)
- Hungary OKTV
- Iceland MO
- India (INMO)
- India Postal Coaching
- India pre-Regional (PRMO)
- India Regional (RMO)
- Indian Olympiad Qualifier in Mathematics (IOQM)
- Indonesia MO Province (OSP SMA)
- Indonesia (INAMO) (OSN)
- Iran MO 2nd Round
- Iran MO 3rd Round
- Ireland (IRMO)
- Israel (Gillis)
- Italy (ITAMO)
- Japan Finals (JMO)
- Japan Junior Finals (JJMO)
- Kazakhstan
- Korea S. Junior (KJMO)
- Korea S. 2nd Round (KMO)
- Korea S. Final (FKMO)
- Kosovo
- Malaysia Juniors
- Malaysia IMONST/a>
- Mexico (OMM)
- Moldova MO
- Moldova JBMO TST
- Netherlands (Dutch) (DMO)
- New Zealand Camp Selection Problems (NZOMC,NZMO)
- North Macedonia
- North Macedonia Juniors
- North Macedonia JBMO TST
- Norway (Abel)
- Paraguay (OMAPA)
- Peru (ONEM)
- Philippines (PMO)
- Philippines MO Area II
- Poland Junior
- Poland 2nd Round
- Poland Finals
- Portugal
- Romania
- Romania District
- Romania JBMO TST
- Saudi Arabia JBMO TST
- Serbia (SMO)
- Serbia JBMO TST
- Singapore 2nd Round (SMO)
- South Africa (SAMO)
- Spain
- Sweden
- Switzerland
- Taiwan
- Thailand (TMO)
- Turkey
- Turkey Junior
- Turkey JBMO TST
- Ukraine
- UK MO for Girls (UKMOG)
- USAJMO
- USAMO
- Vietnam (VMO)
- Regional
- AESC MSU Internet MO (Russia)
- Alberta High School Mathematics Competition (Canada)
- Auckland MO (New Zealand)
- All - Siberian (Russia)
- Almaty City (Kazakhstan)
- Association Mathematical Quebec Competition (AMQ Concours) (Canada)
- Champions Tournament (Ukraine)
- Chisinau City MO (Moldova)
- Clock-Tower School Juniors (Romania)
- COMATEQ (Puerto Rico)
- Cordoba pre-TST (Argentina)
- Danube / Donova (Romania)
- Dürer (Hungary)
- El Número de Oro (Argentina)
- Euler Olympiad (Russia)
- Euler Teachers' MO (Russia)
- European Math Tournament (Belarus)
- Hanoi Open (HOMC) (Vietnam)
- High Standards Olympiad (Высшая проба) (Russia)
- IMAC Arhimede (Romania)
- IMAR (Romania)
- India IITB Mathathon
- India STEMS
- Innopolis University Open MO (Russia)
- International Festival of Young Mathematicians (IFYM) (Bulgaria)
- Izumrud Olympiad Emerald by UrFU
- Kharkiv City (Ukraine)
- Kharkiv Lyceum No.27 (Ukraine)
- Kharkiv Masters Tournament (Ukraine)
- Kukin MO - OmSU (Russia)
- Kurchatov Olympiad (Russia)
- Kyiv City (Ukraine)
- Kyiv Math Festival (Ukraine)
- Kyiv TST (for Ukraine MO)
- League of Winners Tournament (Russia)
- Lotfi Zadeh Olympiad (Azerbaijan)
- Mathematical Multiathlon Tournament (Russia)
- Maths Beyond Limits (Poland)
- Matol Online Olympiad (Kazakshtan)
- Memorial "Aleksandar Blazhevski-Cane" (N. Macedonia)
- Mexico Regional Center Zone
- Mexico Regional Southeast
- Minsk City Internet MO (Belarus)
- MIPT Metropolitan MO (Russia)
- Moscow City 1935-56 (MMO) (Russia)
- Moscow Correspondence MO (Russia)
- Moscow Teachers' MO (Russia)
- Moscow Oral Geometry
- Moscow City Oral MO VI-VII
- Moscow City Oral Team MO
- Rio de Janeiro (OMERJ) (Brazil)/a>
- Rusanovsky Lyceum, Kyiv (Ukraine)
- San Diego Power Contest (USA)
- Savin Competition (Russia)
- Science ON (Romania)
- Stars Of Mathematics (Romania)
- St. Petersburg City (Russia)
- St. Petersburg State School MO (SPbU) (Russia)
- Ukraine Correspodence MO
- Ukraine From Tasks to Tasks
- Ukraine Tournament of Young Mathematicians (TYM)
- UQ/QAMT PS Competition (Australia)
- UNSW School Mathematic Competition (Australia)
- VU MIF Olympiad (Lithuania)
- Youth Mathematical School (Russia)
- Zhautykov City (Kazakhstan)
- 239 Lyceum MO, St. Petersburg (Russia)
- Unofficial
- AoPS Problem Making Contest (APMC)
- Cyberspace MC
- DeuX MO
- ELMO
- EMMO 2016 (India)
- Functional Equations Online Olympiad (FEOO)
- Geometry Mathley 2011-12
- InfinityDots MO
- IMEO
- IMOC (Taiwan)
- International Olympic Revenge (IMOR)
- Kvanta MO VI-VIII (Ukraine)
- LuMaT (Indonesia)
- Mathlinks Contest
- MO Discord Server (MODS)
- MOP Homework (MOSP)
- NIMO Monthly Contests
- NIMO Summer & Winter Contests
- OIFMAT (Fmat) (Chile)
- Oliforum Contest (Italy)
- Olympic Revenge (Brazilian)
- Omaforos Contests OFO, FOFO, COFFEE (Argentina)
- Online Math Open (OMO)
- Purple Comet
- QEDMO (Germany)
- Quarantine MO (Mexican, Global)
- Real IMO Shortlist (Monster's)
- VMEO (VMF) (Vietnam)
- US Ersatz Math Olympiad (USEMO)
- Mags
- Index
- PS
- new geometry books reccomended
- old geometry books reccomended
- video channels with geometry
- new geometry proofs
- authors from Greece & Cyprus
Wednesday, August 7, 2019
2011 JBMO Shortlist G1
Let $ABC$ be an isosceles triangle with $AB=AC$. On the extension of the side ${CA}$ we consider the point ${D}$ such that ${AD<AC}$. The perpendicular bisector of the segment ${BD}$ meets the internal and the external bisectors of the angle $\angle BAC$ at the points ${E}$ and ${Z}$, respectively. Prove that the points ${A, E, D, Z}$ are concyclic.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment