drop down menu

IMAR 2003-19, 2022 (Romania) 18p (-04)

geometry problems from IMAR Mathematical Competition (Romanian)
with aops links

collected inside aops here


2003 - 2019, 2022
missing 2004 problems

2003 IMAR P1
Prove that the interior of a convex pentagon whose sides are all equal, is not covered by the open disks having the sides of the pentagon as diameter.

Prove that in a triangle the following inequality holds: $s\sqrt3 \ge \ell_a + \ell_b +  \ell_c$, where  $\ell_a$ is the length of the angle bisector from angle $A$, and $s$ is the semiperimeter of the triangle

2003 IMAR P3
The exinscribed circle of a triangle $ABC$ corresponding to its vertex $A$ touches the sidelines $AB$ and $AC$ in the points $M$ and $P$, respectively, and touches its side $BC$ in the point $N$. Show that if the midpoint of the segment $MP$ lies on the circumcircle of triangle $ABC$, then the points $O$, $N$, $I$ are collinear, where $I$ is the incenter and $O$ is the circumcenter of triangle $ABC$.

2004 IMAR P (missing)

Let $P$ be an arbitrary point on the side $BC$ of triangle $ABC$ and let $D$ be the tangency point between the incircle of the triangle $ABC$ and the side $BC$. If $Q$ and $R$ are respectively the incenters in the triangles $ABP$ and $ACP$, prove that $\angle QDR$ is a right angle.
Prove that the triangle $QDR$ is isosceles if and only if $P$ is the foot of the altitude from $A$ in the triangle $ABC$.

A convex polygon is given, no two of whose sides are parallel. For each side we consider the angle the side subtends at the vertex farthest from the side. Show that the sum of these angles equals 180 degrees.

2005 IMAR P1
The incircle of triangle $ABC$ touches the sides $BC,CA,AB$ at the points $D,E,F$, respectively. Let $K$ be a point on the side $BC$ and let $M$ be the point on the line segment $AK$ such that $AM=AE=AF$. Denote by $L,N$ the incenters of triangles $ABK,ACK$, respectively. Prove that $K$ is the foot of the altitude from $A$ if and only if $DLMN$ is a square.

2006 IMAR P3
Consider the isosceles triangle $ABC$ with $AB = AC$, and $M$ the midpoint of $BC$. Find the locus of the points $P$ interior to the triangle, for which $\angle BPM+\angle CPA = \pi$.

2008 IMAR P3
Two circles $ \gamma_{1}$ and $ \gamma_{2}$ meet at points $ X$ and $ Y$. Consider the parallel through $ Y$ to the nearest common tangent of the circles. This parallel meets again $ \gamma_{1}$ and $ \gamma_{2}$ at $ A$, and $ B$ respectively. Let $ O$ be the center of the circle tangent to $ \gamma_{1},\gamma_{2}$ and the circle $ AXB$, situated outside $ \gamma_{1}$ and $ \gamma_{2}$ and inside the circle $ AXB.$ Prove that $ XO$ is the bisector line of the angle $ \angle{AXB}.$

Radu Gologan
Consider a convex quadrilateral $ABCD$ with $AB=CB$ and $\angle ABC +2 \angle CDA = \pi$ and let $E$ be the midpoint of $AC$. Show that $\angle CDE =\angle BDA$.

Paolo Leonetti
2010 IMAR P2
Given a triangle $ABC$, let $D$ be the point where the incircle of the triangle $ABC$ touches the side $BC$. A circle through the vertices $B$ and $C$ is tangent to the incircle of triangle $ABC$ at the point $E$. Show that the line $DE$ passes through the excentre of triangle $ABC$ corresponding to vertex $A$.

2011 IMAR P1
Let $A_0A_1A_2$ be a triangle and let $P$ be a point in the plane, not situated on the circle $A_0A_1A_2$. The line $PA_k$ meets again the circle $A_0A_1A_2$ at point $B_k, k = 0, 1, 2$. A line $\ell$ through the point $P$ meets the line $A_{k+1}A_{k+2}$ at point $C_k, k = 0, 1, 2$. Show that the lines $B_kC_k, k = 0, 1, 2$, are concurrent and determine the locus of their concurrency point as the line $\ell$ turns about the point $P$.

Let $K$ be a convex planar set, symmetric about a point $O$, and let $X, Y , Z$ be three points in $K$. Show that $K$ contains the head of one of the vectors $\overrightarrow{OX} \pm \overrightarrow{OY} ,   \overrightarrow{OX}  \pm \overrightarrow{OZ}, \overrightarrow{OY}  \pm \overrightarrow{OZ}$.

Given a triangle $ABC$, let $D$ be a point different from $A$ on the external bisectrix $\ell$ of the angle $BAC$, and let $E$ be an interior point of the segment $AD$. Reflect $\ell$ in the internal bisectrices of the angles $BDC$ and $BEC$ to obtain two lines that meet at some point $F$. Show that the angles $ABD$ and $EBF$ are congruent.

2013 IMAR P4
Given a triangle $ABC$ , a circle centered at some point $O$ meets the segments $BC$ , $CA$ , $AB$ in the pairs of points $X$ and $X^{'}$ , $Y$ and $Y^{'}$ , $Z$ and $Z^{'}$ , respectively ,labelled in circular order : $X,X^{'},Y,Y^{'},Z,Z^{'}$. Let $M$ be the Miquel point of the triangle $XYZ$ and let $M^{'}$ be that of the triangle $X^{'}Y^{'}Z^{'}$ . Prove that the segments $OM$ and $OM^{'}$ have equal lehgths.

Let $ABC$ be a triangle and let $M$ be the midpoint of the side $BC$ . The circle with radius $MA$ centered in $M$ meets the lines $AB$ and $AC$ again at $B^{'}$ and $C^{'}$, respectively , and the tangents to this circle at $B^{'}$ and $C^{'}$ meet at $D$ . Show that the perpendicular bisector of the segment $BC$ bisects the segment $AD$.

2015 IMAR P3
Let $ABC$ be a triangle, let $A_1, B_1, C_1$ be the antipodes of the vertices $A, B, C$, respectively, in the circle $ABC$, and let $X$ be a point in the plane $ABC$, collinear with no two vertices of the triangle $ABC$. The line through $B$, perpendicular to the line $XB$, and the line through $C$, perpendicular to the line $XC$, meet at $A_2$, the points $B_2$ and $C_2$ are defined similarly. Show that the lines $A_1A_2, B_1B_2$ and $C_1C_2$ are concurrent.

2017 IMAR P1
Let $P$ be a point in the interior $\triangle ABC$, and $AD,BE,CF$ 3 concurrent cevians through $P$, with $D,E,F$ on $BC,CA,AB$. The circle with the diameter $BC$ intersects the circle with the diameter $AD$ in $D_1,D_2$. Analogously we define $E_1,E_2$ and $F_1,F_2$. Prove that $D_1,D_2,E_1,E_2,F_1,F_2$ are concylic.

2018 IMAR P1
Let $ABC$ be a triangle whose angle at $A$ is right, and let $D$ be the foot of the altitude form $A$. A variable point $M$ traces the interior of the minor arc $AB$ or the circle $ABC$. The internal bisector of the angle $DAM$ crosses $CM$ at $N$. The line through $N$ and perpendicular to $CM$ crosses the line $AD$ at $P$. Determine the locus of the point where the line $BN$ crosses the line $CP$.

2019 IMAR P1
Consider an acute triangle $ ABC. $ The points $ D,E,F $ are the feet of the altitudes of $ ABC $ from $ A,B,C, $ respectively. $ M,N,P $ are the middlepoints of $ BC,CA,AB, $ respectively. The circumcircles of $ BDP,CDN $ cross at $ X\neq D, $ the circumcircles of $ CEM,AEP $ cross at $ Y\neq E, $ and the circumcircles of $ AFN,BFM $ cross at $ Z\neq F. $ Prove that $ AX,BY,CZ $ are concurrent.

Given is a parallelogram $XYZT$, and the variable points $A, B, C, D$ lie on the sides
$XY, XT, TZ, ZY$ respectively, so that $ABCD$ is cyclic with circumcenter $O$, $AC \parallel XT$,
and $BD \parallel XY$. Let $P$ be the intersection point of the lines $AD$ and $BC$, and let $Q$
be the intersection of the lines $AB$ and $CD$. Prove that the circle $(POQ)$ passes through a fixed
point.

No comments:

Post a Comment