geometry problems from Kyiv City Olympiads (from Ukraine) [grades $\ge 8$]
with aops links in the names
since 2010, started a 2nd round, which is also part of the All-Ukrainian MO
Round 1: 2003 - 2022
with aops links in the names
since 2010, started a 2nd round, which is also part of the All-Ukrainian MO
Round 1: 2003 - 2022
Three segments $2$ cm, $5$ cm and $12$ cm long are constructed on the plane. Construct a trapezoid with bases of $2$ cm and $5$ cm, the sum of the sides of which is $12$ cm, and one of the angles is $60^o$.
(Bogdan Rublev)
The diagonals of a convex quadrilateral divide it into four triangles. The radii of the circles circumscribed around these triangles are equal. Can such a property have a quadrilateral other than:
a) parallelogram,
b) rhombus?
(Sharygin Igor)
Let $ABCD$ be a convex quadrilateral. The bisector of the angle $ACD$ intersects $BD$ at point $E$. It is known that $\angle CAD = \angle BCE= 90^o$. Prove that the $AC$ is the bisector of the angle $BAE$ .
(Nikolay Nikolay)
Let $x_1, x_2, x_3, x_4$ be the distances from an arbitrary point inside the tetrahedron to the planes of its faces, and let $h_1, h_2, h_3, h_4$ be the corresponding heights of the tetrahedron. Prove that$$\sqrt{h_1+h_2+h_3+h_4} \ge \sqrt{x_1}+\sqrt{x_2}+\sqrt{x_3}+\sqrt{x_4}$$
(Dmitry Nomirovsky)
Given a right triangle $ABC$ ($\angle A <45^o$,$ \angle C = 90^o$), on the sides $AC$ and $AB$ which are selected points $D,E$ respectively, such that $BD = AD$ and $CB = CE$. Let the segments $BD$ and $CE$ intersect at the point $O$. Prove that $\angle DOE = 90^o$.
In an isosceles triangle $ABC$ with base $AC$, on side $BC$ is selected point $K$ so that $\angle BAK = 24^o$. On the segment $AK$ the point $M$ is chosen so that $\angle ABM = 90^o$, $AM=2BK$. Find the values of all angles of triangle $ABC$.
The board depicts the triangle $ABC$, the altitude $AH$ and the angle bisector $AL$ which intersectthe inscribed circle in the triangle at the points $M$ and $N, P$ and $Q$, respectively. After that, the figure was erased, leaving only the points $H, M$ and $Q$. Restore the triangle $ABC$.
(Bogdan Rublev)
Let the points $M$ and $N$ in the triangle $ABC$ be the midpoints of the sides $BC$ and $AC$, respectively. It is known that the point of intersection of the altitudes of the triangle $ABC$ coincides with the point of intersection of the medians of the triangle $AMN$. Find the value of the angle $ABC$.
Given a triangle $ABC$, in which $\angle B> 90^o$. Perpendicular bisector of the side $AB$ intersects the side $AC$ at the point $M$, and the perpendicular bisector of the side $AC$ intersects the extension of the side $AB$ beyond the vertex $B$ at point $N$. It is known that the segments $MN$ and $BC$ are equal and intersect at right angles. Find the values of all angles of triangle $ABC$.
Given a rectangular parallelepiped $ABCDA_1B_1C_1D_1$. Let the points $E$ and $F$ be the feet of the perpendiculars drawn from point $A$ on the lines $A_1D$ and $A_1C$, respectively, and the points $P$ and $Q$ be the feet of the perpendiculars drawn from point $B_1$ on the lines $A_1C_1$ and $A_1C$, respectively. Prove that $\angle EFA = \angle PQB_1$
2005 Kyiv City MO 8.5 9.5
Let $ABCDEF $ be a regular hexagon. On the line $AF $ mark the point $X$ so that $ \angle DCX = 45^o$ . Find the value of the angle $FXE$.
In a right triangle $ABC $ with a right angle $\angle C $, n the sides $AC$ and $AB$, the points $M$ and $N$ are selected, respectively, that $CM = MN$ and $\angle MNB = \angle CBM$. Let the point $K$ be the projection of the point $C $ on the segment $MB $. Prove that the line $NK$ passes through the midpoint of the segment $BC$.
A circle touches the sides $AC$ and $AB$ of the triangle $ABC $ at the points ${{B}_ {1}} $ and ${{C}_ {1}}$ respectively. The segments $B {{B} _ {1}} $ and $C {{C} _ {1}}$ are equal. Prove that the triangle $ABC $ is isosceles.
Let $ABCDEF $ be a regular hexagon. On the line $AF $ mark the point $X$ so that $ \angle DCX = 45^o$ . Find the value of the angle $FXE$.
(Vyacheslav Yasinsky)
2005 Kyiv City MO 10.4In a right triangle $ABC $ with a right angle $\angle C $, n the sides $AC$ and $AB$, the points $M$ and $N$ are selected, respectively, that $CM = MN$ and $\angle MNB = \angle CBM$. Let the point $K$ be the projection of the point $C $ on the segment $MB $. Prove that the line $NK$ passes through the midpoint of the segment $BC$.
(Alex Klurman)
2005 Kyiv City MO 11.2A circle touches the sides $AC$ and $AB$ of the triangle $ABC $ at the points ${{B}_ {1}} $ and ${{C}_ {1}}$ respectively. The segments $B {{B} _ {1}} $ and $C {{C} _ {1}}$ are equal. Prove that the triangle $ABC $ is isosceles.
(Timoshkevich Taras)
On a straight line $4$ points are successively set , $A, P, Q,W $, which are the points of intersection of the bisector $AL $ of the triangle $ABC$ with the circumscribed and inscribed circle. Knowing only these points, construct a triangle $ABC $.
b) Find the geometric locus of the possible location of the vertex $B$ of the triangle $ABC$.
In the triangle $ABC$ on the side $AC$ the points $F$ and $L$ are selected so that $AF = LC <\frac{1}{2} AC$. Find the angle $ \angle FBL $ if $A {{B} ^ {2}} + B {{C} ^ {2}} = A {{L} ^ {2}} + L {{C } ^ {2}}$
Given a triangle $ABC $, $A {{A} _ {1}} $, $B {{B} _ {1}} $, $C {{C} _ {1}}$ - its chevians intersecting at one point. ${{A} _ {0}}, {{C} _ {0}} $ - the midpoint of the sides $BC $ and $AB$ respectively. Lines ${{B} _ {1}} {{C} _ {1}} $, ${{B} _ {1}} {{A} _ {1}} $and ${ {B} _ {1}} B$ intersect the line ${{A} _ {0}} {{C} _ {0}} $ at points ${{C} _ {2}} $ , ${{A} _ {2}} $ and ${{B} _ {2}} $, respectively. Prove that the point ${{B} _ {2}} $ is the midpoint of the segment ${{A} _ {2}} {{C} _ {2}} $.
In the tetrahedron $SABC $ at the height $SH$ the following point $O$ is chosen, such that: $\angle AOS + \alpha = \angle BOS + \beta = \angle COS + \gamma = 180^o $, where $\alpha, \beta, \gamma$ are dihedral angles at the edges $BC, AC, AB $, respectively, at this point $H$ lies inside the base $ABC$. Let ${{A} _ {1}}, \, {{B} _ {1}}, \, {{C} _ {1}} $be the points of intersection of lines and planes: ${{A} _ {1}} = AO \cap SBC $, ${{B} _ {1}} = BO \cap SAC $, ${{C} _ {1}} = CO \cap SBA$ . Prove that if the planes $ABC $ and ${{A} _ {1}} {{B} _ {1}} {{C} _ {1}} $ are parallel, then $SA = SB = SC $.
A chord $AB$ is drawn in the circle, on which the point $P$ is selected in such a way that $AP = 2PB$. The chord $DE$ is perpendicular to the chord $AB $ and passes through the point $P$. Prove that the midpoint of the segment $AP$ is the orthocener of the triangle $AED$.
2009 Kyiv City MO 10.4 11.3
In the triangle $ABC$ the bisectors $AL$ and $BT$ are drawn, which intersect at the point $I$, and their extensions intersect the circle circumscribed around the triangle $ABC$ at the points $E$ and $D$ respectively. The segment $DE$ intersects the sides $AC$ and $BC$ at the points $F$ and $K$, respectively. Prove that:
a) quadrilateral $IKCF$ is rhombus;
b) the side of this rhombus is $\sqrt {DF \cdot EK}$.
Point $O$ is the center of the circumcircle of the acute triangle $ABC$. The line $AO$ intersects the side $BC$ at point $D$ so that $OD = BD = 1/3 BC$ . Find the angles of the triangle $ABC$. Justify the answer.
2010 Kyiv City MO 8.5
In an acute-angled triangle $ABC$, the points $M$ and $N$ are the midpoints of the sides $AB$ and $AC$, respectively. For an arbitrary point $S$ lying on the side of $BC$ prove that the condition holds $(MB- MS)(NC-NS) \le 0$
2010 Kyiv City MO 9.4
In an acute-angled triangle $ABC$, the point $O$ is the center of the circumcircle, $CH$ is the height of the triangle, and the point $T$ is the foot of the perpendicular dropped from the vertex $C$ on the line $AO$. Prove that the line $TH$ passes through the midpoint of the side $BC$ .
In an acute-angled triangle $ABC$, the point $O$ is the center of the circumcircle, and the point $H$ is the orthocenter. It is known that the lines $OH$ and $BC$ are parallel, and $BC = 4OH $. Find the value of the smallest angle of triangle $ ABC $.
On the legs $AC, BC$ of a right triangle $\vartriangle ABC$ select points $M$ and $N$, respectively, so that $\angle MBC = \angle NAC$. The perpendiculars from points $M$ and $C$ on the line $AN$ intersect $AB$ at points $K$ and $L$, respectively. Prove that $KL=LB$.
(O. Clurman)
On the sides $AB$ and $CD$ of the parallelogram $ABCD$ mark points $E$ and $F$, respectively. On the diagonals $AC$ and $BD$ chose the points $M$ and $N$ so that $EM\parallel BD$ and $FN\parallel AC$. Prove that the lines $AF, DE$ and $MN$ intersect at one point.
(B. Rublev)
A circle $\omega$ is inscribed in the acute-angled triangle $\vartriangle ABC$, which touches the side $BC$ at the point $K$. On the lines $AB$ and $AC$, the points $P$ and $Q$, respectively, are chosen so that $PK \perp AC$ and $QK \perp AB$. Denote by $M$ and $N$ the points of intersection of $KP$ and $KQ$ with the circle $\omega$. Prove that if $MN \parallel PQ$, then $\vartriangle ABC$ is isosceles.
(S. Slobodyanyuk)
Let $O$ be the center of the circle $\omega$ circumscribed around the acute-angled triangle $\vartriangle ABC$, and $W$ be the midpoint of the arc $BC$ of the circle $\omega$, which does not contain the point $A$, and $H$ be the point of intersection of the heights of the triangle $\vartriangle ABC$. Find the angle $\angle BAC$, if $WO = WH$.
(O. Clurman)
2007 Kyiv City MO 10.3
The points $ P, Q$ are given on the plane, which are the points of intersection of the bisector $AL$ of some triangle $ABC$ with an inscribed circle, and the point $W$ is the intersection of the bisector $AL$ with a circumscribed circle other than the vertex $A$.
a) Find the geometric locus of the possible location of the vertex $A$ of the triangle $ABC$.The points $ P, Q$ are given on the plane, which are the points of intersection of the bisector $AL$ of some triangle $ABC$ with an inscribed circle, and the point $W$ is the intersection of the bisector $AL$ with a circumscribed circle other than the vertex $A$.
b) Find the geometric locus of the possible location of the vertex $B$ of the triangle $ABC$.
2007 Kyiv City MO 11.5
The points $A$ and $P$ are marked on the plane. Consider all such points $B, C $ of this plane that $\angle ABP = \angle MAB$ and $\angle ACP = \angle MAC $, where $M$ is the midpoint of the segment $BC$. Prove that all the circumscribed circles around the triangle $ABC$ for different points $B$ and $C$ pass through some fixed point other than the point $A$.
The points $A$ and $P$ are marked on the plane. Consider all such points $B, C $ of this plane that $\angle ABP = \angle MAB$ and $\angle ACP = \angle MAC $, where $M$ is the midpoint of the segment $BC$. Prove that all the circumscribed circles around the triangle $ABC$ for different points $B$ and $C$ pass through some fixed point other than the point $A$.
(Alexei Klurman)
There are two triangles $ABC$ and $BKL$ on the plane so that the segment $AK$ is divided into three equal parts by the point of intersection of the medians $\vartriangle ABC$ and the point of intersection of the bisectors $ \vartriangle BKL $ ($AK $ - median $ \vartriangle ABC$, $KA$ - bisector $\vartriangle BKL $) and quadrilateral $KALC $ is trapezoid. Find the angles of the triangle $BKL$.
(Bogdan Rublev)
2008 Kyiv City MO 9.5 In the triangle $ABC$ on the side $AC$ the points $F$ and $L$ are selected so that $AF = LC <\frac{1}{2} AC$. Find the angle $ \angle FBL $ if $A {{B} ^ {2}} + B {{C} ^ {2}} = A {{L} ^ {2}} + L {{C } ^ {2}}$
(Zhidkov Sergey)
2008 Kyiv City MO 10.4Given a triangle $ABC $, $A {{A} _ {1}} $, $B {{B} _ {1}} $, $C {{C} _ {1}}$ - its chevians intersecting at one point. ${{A} _ {0}}, {{C} _ {0}} $ - the midpoint of the sides $BC $ and $AB$ respectively. Lines ${{B} _ {1}} {{C} _ {1}} $, ${{B} _ {1}} {{A} _ {1}} $and ${ {B} _ {1}} B$ intersect the line ${{A} _ {0}} {{C} _ {0}} $ at points ${{C} _ {2}} $ , ${{A} _ {2}} $ and ${{B} _ {2}} $, respectively. Prove that the point ${{B} _ {2}} $ is the midpoint of the segment ${{A} _ {2}} {{C} _ {2}} $.
(Eugene Bilokopitov)
2008 Kyiv City MO 11.4In the tetrahedron $SABC $ at the height $SH$ the following point $O$ is chosen, such that: $\angle AOS + \alpha = \angle BOS + \beta = \angle COS + \gamma = 180^o $, where $\alpha, \beta, \gamma$ are dihedral angles at the edges $BC, AC, AB $, respectively, at this point $H$ lies inside the base $ABC$. Let ${{A} _ {1}}, \, {{B} _ {1}}, \, {{C} _ {1}} $be the points of intersection of lines and planes: ${{A} _ {1}} = AO \cap SBC $, ${{B} _ {1}} = BO \cap SAC $, ${{C} _ {1}} = CO \cap SBA$ . Prove that if the planes $ABC $ and ${{A} _ {1}} {{B} _ {1}} {{C} _ {1}} $ are parallel, then $SA = SB = SC $.
(Alexey Klurman)
2009 Kyiv City MO 8.5 9.3A chord $AB$ is drawn in the circle, on which the point $P$ is selected in such a way that $AP = 2PB$. The chord $DE$ is perpendicular to the chord $AB $ and passes through the point $P$. Prove that the midpoint of the segment $AP$ is the orthocener of the triangle $AED$.
2009 Kyiv City MO 10.4 11.3
In the triangle $ABC$ the bisectors $AL$ and $BT$ are drawn, which intersect at the point $I$, and their extensions intersect the circle circumscribed around the triangle $ABC$ at the points $E$ and $D$ respectively. The segment $DE$ intersects the sides $AC$ and $BC$ at the points $F$ and $K$, respectively. Prove that:
a) quadrilateral $IKCF$ is rhombus;
b) the side of this rhombus is $\sqrt {DF \cdot EK}$.
(Rozhkova Maria)
2010 Kyiv City MO 8.4 9.6Point $O$ is the center of the circumcircle of the acute triangle $ABC$. The line $AO$ intersects the side $BC$ at point $D$ so that $OD = BD = 1/3 BC$ . Find the angles of the triangle $ABC$. Justify the answer.
2010 Kyiv City MO 8.5
In an acute-angled triangle $ABC$, the points $M$ and $N$ are the midpoints of the sides $AB$ and $AC$, respectively. For an arbitrary point $S$ lying on the side of $BC$ prove that the condition holds $(MB- MS)(NC-NS) \le 0$
2010 Kyiv City MO 9.4
In an acute-angled triangle $ABC$, the point $O$ is the center of the circumcircle, $CH$ is the height of the triangle, and the point $T$ is the foot of the perpendicular dropped from the vertex $C$ on the line $AO$. Prove that the line $TH$ passes through the midpoint of the side $BC$ .
2010 Kyiv City MO 10.3
A point $O$ is chosen inside the square $ABCD$. The square $A'B'C'D'$ is the image of the square $ABCD$ under the homothety with center at point $O$ and coefficient $k> 1$ (points $A', B', C', D' $ are images of points $A, B, C, D$ respectively). Prove that the sum of the areas of the quadrilaterals $A'ABB'$ and $C'CDD'$ is equal to the sum of the areas quadrilaterals $B'BCC'$ and $D'DAA'$
A point $O$ is chosen inside the square $ABCD$. The square $A'B'C'D'$ is the image of the square $ABCD$ under the homothety with center at point $O$ and coefficient $k> 1$ (points $A', B', C', D' $ are images of points $A, B, C, D$ respectively). Prove that the sum of the areas of the quadrilaterals $A'ABB'$ and $C'CDD'$ is equal to the sum of the areas quadrilaterals $B'BCC'$ and $D'DAA'$
2010 Kyiv City MO 11.3
The quadrilateral $ABCD$ is inscribed in a circle and has perpendicular diagonals. Points $K,L,M,Q$ are the points of intersection of the altitudes of the triangles $ABD, ACD, BCD, ABC$, respectively. Prove that the quadrilateral $KLMQ$ is equal to the quadrilateral $ABCD$.
(Rozhkova Maria)
The medians $AL, BM$, and $CN$ are drawn in the triangle $ABC$. Prove that $\angle ANC = \angle ALB$ if and only if $\angle ABM =\angle LAC$.
Let $ABCD$ be an inscribed quadrilateral. Denote the midpoints of the sides $AB, BC, CD$ and $DA$ through $M, L, N$ and $K$, respectively. It turned out that $\angle BM N = \angle MNC$. Prove that:
i) $\angle DKL = \angle CLK$.
ii) in the quadrilateral $ABCD$ there is a pair of parallel sides.
2011 Kyiv City MO 9.4.1
The triangle $ABC$ is inscribed in a circle. At points $A$ and $B$ are tangents to this circle, which intersect at point $T$. A line drawn through the point $T$ parallel to the side $AC$ intersects the side $BC$ at the point $D$. Prove that $AD = CD$.
2011 Kyiv City MO 10.3
A trapezoid $ABCD$ with bases $BC = a$ and $AD = 2a$ is drawn on the plane. Using only with a ruler, construct a triangle whose area is equal to the area of the trapezoid. With the help of a ruler you can draw straight lines through two known points.
(Veklich Bogdan)
2011 Kyiv City MO 9.4 (part i as 8.4)Let $ABCD$ be an inscribed quadrilateral. Denote the midpoints of the sides $AB, BC, CD$ and $DA$ through $M, L, N$ and $K$, respectively. It turned out that $\angle BM N = \angle MNC$. Prove that:
i) $\angle DKL = \angle CLK$.
ii) in the quadrilateral $ABCD$ there is a pair of parallel sides.
2011 Kyiv City MO 9.4.1
The triangle $ABC$ is inscribed in a circle. At points $A$ and $B$ are tangents to this circle, which intersect at point $T$. A line drawn through the point $T$ parallel to the side $AC$ intersects the side $BC$ at the point $D$. Prove that $AD = CD$.
2011 Kyiv City MO 10.3
A trapezoid $ABCD$ with bases $BC = a$ and $AD = 2a$ is drawn on the plane. Using only with a ruler, construct a triangle whose area is equal to the area of the trapezoid. With the help of a ruler you can draw straight lines through two known points.
(Rozhkova Maria)
2011 Kyiv City MO 11.4
On the diagonals $AC$ and $BD$ of the inscribed quadrilateral A$BCD$, the points X and Y are marked, respectively, so that the quadrilateral $ABXY$ is a parallelogram. Prove that the circumscribed circles of triangles $BXD$ and $CYA$ have equal radii.
On the diagonals $AC$ and $BD$ of the inscribed quadrilateral A$BCD$, the points X and Y are marked, respectively, so that the quadrilateral $ABXY$ is a parallelogram. Prove that the circumscribed circles of triangles $BXD$ and $CYA$ have equal radii.
(Vyacheslav Yasinsky)
Inside the parallelogram $ABCD$ are the circles $\gamma_1$ and $\gamma_2$, which are externally tangent at the point $K$. The circle $\gamma_1$ touches the sides $AD$ and $AB$ of the parallelogram, and the circle $\gamma_2$ touches the sides $CD$ and $CB$. Prove that the point $K$ lies on the diagonal $AC$ of the paralelogram.
Given an isosceles triangle $ABC$ with a vertex at the point $B$. Based on $AC$, an arbitrary point $D $ is selected, different from the vertices $A$ and $C $. On the line $AC $ select the point $E $ outside the segment $AC$, for which $AE = CD$. Prove that the perimeter $\Delta BDE$ is larger than the perimeter $\Delta ABC$.
2012 Kyiv City MO 8.3
On the circle $\gamma$ the points $A$ and $B$ are selected. The circle $\omega$ touches the
segment $AB$ at the point $K$ and intersects the circle $\gamma$ at the points $M$ and $N$.
The points lie on the circle $\gamma$ in the following order: $A, \, \, M, \, \, N, \, \, B$. Prove that
$\angle AMK = \angle KNB$.
2012 Kyiv City MO 11.3
Round 2: 2010-22
The points $A \ne B$ are given on the plane. The point $C$ moves along the plane in such a way that $\angle ACB = \alpha$ , where $\alpha$ is the fixed angle from the interval ($0^o, 180^o$). The circle inscribed in triangle ABC has center the point $I$ and touches the sides $AB, BC, CA$ at points $D, E, F$ accordingly. Rays $AI$ and $BI$ intersect the line $EF$ at points $M$ and $N$, respectively. Show that:
a) the segment $MN$ has a constant length,
b) all circles circumscribed around triangle $DMN$ have a common point
2012 Kyiv City MO 8.3
segment $AB$ at the point $K$ and intersects the circle $\gamma$ at the points $M$ and $N$.
The points lie on the circle $\gamma$ in the following order: $A, \, \, M, \, \, N, \, \, B$. Prove that
$\angle AMK = \angle KNB$.
(Yuri Biletsky)
The triangle $ABC$ with $AB> AC$ is inscribed in a circle, the bisector $\angle BAC$
intersects the side $BC$ of the triangle at the point $K$, and the circumscribed circle at the point $M$.
The midlineof $\Delta ABC$, which is parallel to the side $AB$, intersects $AM$ at the point $O$,
the line $CO$ intersects the line $AB$ at the point $N$. Prove that a circle can be circumscribed
around the quadrilateral $BNKM$.
(Nagel Igor)
Inside the triangle $ABC$ choose the point $M$, and on the side $BC$ - the point $K$
in such a way that $MK || AB$. The circle passing through the points $M, \, \, K, \, \, C,$ crosses the
side $AC$ for the second time at the point $N$, a circle passing through the points $M, \, \, N, \, \, A, $
crosses the side $AB$ for the second time at the point $Q$. Prove that $BM = KQ$.
(Nagel Igor)
Let $ABCD$ be a convex quadrilateral. Prove that the circles inscribed in the triangles $ABC$, $BCD$, $CDA$ and $DAB$ have a common point if and only if $ABCD$ is a rhombus.
The two circles ${{w} _ {1}}, \, \, {{w} _ {2}}$ touch externally at the point $Q$. The common external tangent of these circles is tangent to ${{w} _ {1}}$ at the point $B$, $BA$ is the diameter of this circle. A tangent to the circle ${{w} _ {2}} $ is drawn through the point $A$, which touches this circle at the point $C$, such that the points $B$ and $C$ lie in one half-plane relative to the line $AQ$. Prove that the circle ${{w} _ {1}}$ bisects the segment $C $.
(Igor Nagel)
The segment $AB$ is the diameter of the circle. The points $M$ and $C$ belong to this circle and are located in different half-planes relative to the line $AB$. From the point $M$ the perpendiculars $MN$ and $MK$ are drawn on the lines $AB$ and $AC$, respectively. Prove that the line $KN$ intersects the segment $CM$ in its midpoint.
(Igor Nagel)
In the quadrilateral $ABCD$ the condition $AD = AB + CD$ is fulfilled. The bisectors of the angles $BAD$ and $ADC$ intersect at the point $P $, as shown in Fig. Prove that $BP = CP$.
The sides of triangles $ABC$ and $ACD$ satisfy the following conditions: $AB = AD = 3$ cm, $BC = 7$ cm, $DC = 11$ cm. What values can the side length $AC$ take if it is an integer number of centimeters, is the average in $\Delta ACD$ and the largest in $\Delta ABC$?
Given an equilateral $\Delta ABC$, in which ${{A} _ {1}}, {{B} _ {1}}, {{C} _ {1}}$ - the midpoint of the sides $ BC, \, \, AC, \, \, AB$ respectively. The line $l$ passes through the vertex $A$, we denote by $P, Q$- the projection of the points $B, C$ on the line $l$, respectively (the line $ l $ and the point $Q, \, \, A, \, \, P$ are located as shown in fig.). Denote by $T $ the point of intersection of the lines ${{B} _ {1}} P$ and ${{C} _ {1}} Q$. Prove that the line ${{A} _ {1}} T$ is perpendicular to the line $l$.
(Serdyuk Nazar)
On the side $AB$ of the triangle $ABC$ mark the point $K$. The segment $CK$ intersects the median $AM$ at the point $F$. It is known that $AK = AF$. Find the ratio $MF: BK$.
Two circles ${{c} _ {1}}, \, \, {{c} _ {2}}$ pass through the center $O$ of the circle $c$ and touch it internally in points $A$ and $B$, respectively. Prove that the line $AB$ passes though a common point of circles ${{c} _ {1}}, \, \, {{c} _ {2}} $.
The altitueds $A {{A} _ {1}} $, $B {{B} _ {1}}$ and $C {C} _ 1$ are drawn in the acute triangle $ABC$. . The perpendicular $AK$ is drawn from the vertex $A$ on the line ${{A} _ {1}} {{B} _ {1}}$, and the perpendicular $BL$ is drawn from the vertex $B$ on the line ${{C} _ {1}} {{B} _ {1}}$. Prove that ${{A} _ {1}} K = {{B} _ {1}} L$.
(Maria Rozhkova)
In the triangle $ABC$ the side $AC = \tfrac {1} {2} (AB + BC) $, $BL$ is the bisector $\angle ABC$, $K, \, \, M $ - the midpoints of the sides $AB$ and $BC$, respectively. Find the value $\angle KLM$ if $\angle ABC = \beta$
In the triangle $ABC$, for which $AC <AB <BC$, on the sides $AB$ and $BC$ the points $K$ and $N$ were chosen, respectively, that $KA = AC = CN$. The lines $AN$ and $CK$ intersect at the point $O$. From the point $O$ held the segment $OM \perp AC $ ($M \in AC$) . Prove that the circles inscribed in triangles $ABM$ and $CBM$ are tangent.
(Igor Nagel)
Construct for the triangle $ABC$ a circle $S$ passing through the point $B$ and touching the line $CA$ at the point $A$, a circle $T$ passing through the point $C$ and touches the line $BA$ at the point $A$. The second point of intersection of the circles $S$ and $T$ is denoted by $D$. The point of intersection of the line $AD$ and the circumscribed circle $\Delta ABC$ is denoted by $E$. Prove that $D$ is the midpoint of the segment $AE$.
In the isosceles triangle $ABC$, $ (AB = BC)$ the bisector $AD$ was drawn, and in the triangle $ABD$ the bisector $DE$ was drawn. Find the values of the angles of the triangle $ABC$, if it is known that the bisectors of the angles $ABD$ and $AED$ intersect on the line $AD$.
(Fedak Ivan)
It is known that a square can be inscribed in a given right trapezoid so that each of its vertices lies on the corresponding side of the trapezoid (none of the vertices of the square coincides with the vertex of the trapezoid). Construct this inscribed square with a compass and a ruler.
(Maria Rozhkova)
Circles ${{w} _ {1}}$ and ${{w} _ {2}}$ with centers at points ${{O} _ {1}}$ and ${{ O} _ {2}}$ intersect at points $A$ and $B$, respectively. Around the triangle ${{O} _ {1}} {{O} _ {2}} B$ circumscribe a circle $w$ centered at the point $O$, which intersects the circles ${{w } _ {1}}$ and ${{w} _ {2}}$ for the second time at points $K$ and $L$, respectively. The line $OA$ intersects the circles ${{w} _ {1}}$ and ${{w} _ {2}}$ at the points $M$ and $N$, respectively. The lines $MK$ and $NL$ intersect at the point $P$. Prove that the point $P$ lies on the circle $w$ and $PM = PN$.
(Vadim Mitrofanov)
The points $X, \, \, Y$are selected on the sides $AB$ and $AD$ of the convex quadrilateral $ABCD$, respectively. Find the ratio $AX \, \,: \, \, BX$ if you know that $CX || DA$, $DX || CB$, $BY || CD$ and $CY || BA$.
In the acute-angled triangle $ ABC $, the sides $ AB $ and $BC$ have different lengths, and the extension of the median $ BM $ intersects the circumscribed circle at the point $ N $. On this circle we note such a point $ D $ that $ \angle BDH = 90 {} ^ \circ $, where $ H $ is the point of intersection of the altitudes of the triangle $ ABC $. The point $K$ is chosen so that $ ANCK $ is a parallelogram. Prove that the lines $ AC $, $ KH $ and $ BD $ intersect at one point.
(Igor Nagel)
On the bisector of the angle $ BAC $ of the triangle $ ABC $ we choose the points $ {{B} _ {1}}, \, \, {{C} _ {1}} $ for which $ B {{B} _ {1 }}\perp AB $, $ C {{C} _ {1}} \perp AC $. The point $ M $ is the midpoint of the segment $ {{B} _ {1}} {{C} _ {1}} $. Prove that $ MB = MC $.
In the triangle $ABC$ the bisectors $AD$ and $BE$ are drawn. Prove that $\angle ACB = 60 {} ^ \circ$ if and only if $AE + BD = AB$.
(Hilko Danilo)
In the quadrilateral $ABCD$, shown in fig. , the equations are true: $\angle ABC = \angle BCD$ and $2AB = CD$. On the side $BC$, a point $X$ is selected such that $\angle BAX = \angle CDA$. Prove that $AX = AD$.
On the sides $BC$ and $AB$ of the triangle $ABC$ the points ${{A} _ {1}}$ and ${{C} _ {1}} $ are selected accordingly so that the segments $A {{A} _ {1}}$ and $C {{C} _ {1}}$ are equal and perpendicular. Prove that if $\angle ABC = 45 {} ^ \circ$, then $AC = A {{A} _ {1}} $.
(Gogolev Andrew)
On the sides $AB$ and $AD$ of the square $ABCD$, the points $N$ and $P$ are selected, respectively, so that $PN = NC$, the point $Q$ Is a point on the segment $AN$ for which $\angle NCB = \angle QPN$. Prove that $\angle BCQ = \tfrac {1} {2} \angle PQA$.
On the circle with diameter $AB$, the point $M$ was selected and fixed. Then the point ${{Q} _ {i}}$ is selected, for which the chord $M {{Q} _ {i}}$ intersects $AB$ at the point ${{K} _ {i}}$ and thus $ \angle M {{K} _ {i}} B <90 {} ^ \circ$. A chord that is perpendicular to $AB$ and passes through the point ${{K} _ {i}}$ intersects the line $B {{Q} _ {i}}$ at the point ${{P } _ {i}}$. Prove that the points ${{P} _ {i}}$ in all possible choices of the point ${{Q} _ {i}}$ lie on the same line.
(Igor Nagel)
The median $AM$ is drawn in the acute-angled triangle $ABC$ with different sides. Its extension intersects the circumscribed circle $w$ of this triangle at the point $P$. Let $A {{H} _ {1}}$ be the altitude $\Delta ABC$, $H$ be the point of intersection of its altitudes. The rays $MH$ and $P {{H} _ {1}}$ intersect the circle $w$ at the points $K$ and $T$, respectively. Prove that the circumscribed circle of $\Delta KT {{H} _ {1}}$ touches the segment $BC$.
(Hilko Danilo)
In the triangle $ABC$ the bisector $AD$ is drawn, $E$ is the point of tangency of the inscribed circle to the side $BC$, $I$ is the center of the inscribed circle $\Delta ABC$. The point ${{A} _ {1}}$ on the circumscribed circle $\Delta ABC$ is such that $A {{A} _ {1}} || BC$. Denote by $T$ - the second point of intersection of the line $E {{A} _ {1}}$ and the circumscribed circle $\Delta AED$. Prove that $IT = IA$.
On the sides $BC$ and $CD$ of the square $ABCD$, the points $M$ and $N$ are selected in such a way that $\angle MAN= 45^o$. Using the segment $MN$, as the diameter, we constructed a circle $w$, which intersects the segments $AM$ and $AN$ at points $P$ and $Q$, respectively. Prove that the points $B, P$ and $Q$ lie on the same line.
In a trapezoid $ABCD$ with bases $AD$ and $BC$, the bisector of the angle $\angle DAB$ intersects the bisectors of the angles $\angle ABC$ and $\angle CDA$ at the points $P$ and $S$, respectively, and the bisector of the angle $\angle BCD$ intersects the bisectors of the angles $\angle ABC$ and $\angle CDA$ at the points $Q$ and $R$, respectively. Prove that if $PS\parallel RQ$, then $AB = CD$.
Let $I$ be the center of the inscribed circle of $ABC$ and let $I_A$ be the center of the exscribed circle touching the side $BC$. Let $M$ be the midpoint of the side $BC$, and $N$ be the midpoint of the arc $BAC$ of the circumscribed circle of $ABC$ . The point $T$ is symmetric to the point $N$ wrt point $A$. Prove that the points $I_A,M,I,T$ lie on the same circle.
(Danilo Hilko)
In the triangle $ABC$, the medians $BB_1$ and $CC_1$, which intersect at the point $M$, are drawn.
Prove that a circle can be inscribed in the quadrilateral $AC_1MB_1$ if and only if $AB = AC$.
Given the square $ABCD$. Let point $M$ be the midpoint of the side $BC$, and $H$ be the foot of the perpendicular from vertex $C$ on the segment $DM$. Prove that $AB = AH$.
(Danilo Hilko)
In the acute isosceles triangle $ABC$ the altitudes $BB_1$ and $CC_1$ are drawn, which intersect at the point $H$. Let $L_1$ and $L_2$ be the feet of the bisectors of the triangles $B_1AC_1$ and $B_1HC_1$ drawn from vertices $A$ and $H$, respectively. The circumscribed circles of triangles $AHL_1$ and $AHL_2$ intersects the line $B_1C_1$ for the second time at points $P$ and $Q$, respectively. Prove that points $B, C, P$ and $Q$ lie on the same circle.
(M. Plotnikov, D. Hilko)
The bisector $AD$ is drawn in the triangle $ABC$. Circle $k$ passes through the vertex $A$ and touches the side $BC$ at point $D$. Prove that the circle circumscribed around $ABC$ touches the circle $k$ at point $A$.
Inside the triangle $ABC $, the point $P $ is selected so that $BC = AP $ and $\angle APC = 180 {} ^\circ - \angle ABC $. On the side $AB $ there is a point $K $, for which $AK = KB + PC $. Prove that $\angle AKC = 90 {} ^\circ $.
(Danilo Hilko)
In the quadrilateral $ABCD$ point $E$ - the midpoint of the side $AB$, point $F$ - the midpoint of the side $BC$, point $G$ - the midpoint $AD$ . It turned out that the segment $GE$ is perpendicular to $AB$, and the segment $GF$ is perpendicular to the segment $BC$. Find the value of the angle $GCD$, if it is known that $\angle ADC = 70 {} ^\circ$.
In the isosceles triangle $ABC$ with the vertex at the point $B$, the altitudes $BH$ and $CL$ are drawn. The point $D$ is such that $BDCH$ is a rectangle. Find the value of the angle $DLH$.
(Bogdan Rublev)
Given a triangle $ABC$, the perpendicular bisector of the side $AC$ intersects the bisector of the triangle $AK$ at the point $P$, $M$ - such a point that $\angle MAC = \angle PCB$, $\angle MPA = \angle CPK$, and points $M$ and $K$ lie on opposite sides of the line $AC$. Prove that the line $AK$ bisects the segment $BM$.
(Anton Trygub)
Given a circle $\Gamma$ with center at point $O$ and diameter $AB$. $OBDE$ is square, $F$ is the second point of intersection of the line $AD$ and the circle $\Gamma$, $C$ id the midpoint of the segment $AF$. Find the value of the angle $OCB$.
In the acute-angled triangle $ABC$, the altitudes $BP$ and $CQ$ were drawn, and the point $T$ is the intersection point of the altitudes of $\Delta PAQ$. It turned out that $\angle CTB = 90 {} ^ \circ$. Find the measure of $\angle BAC$.
(Mikhail Plotnikov)
Given an isosceles $ABC$, which has $2AC = AB + BC$. Denote $I$ the center of the inscribed circle, $K$ the midpoint of the arc $ABC$ of the circumscribed circle. Let $T$ be such a point on the line $AC$ that $\angle TIB = 90 {} ^ \circ$. Prove that the line $TB$ touches the circumscribed circle $\Delta KBI$.
(Anton Trygub)
In the quadrilateral $ABCD$, the diagonal $AC$ is the bisector $\angle BAD$ and $\angle ADC = \angle ACB$. The points $X, \, \, Y$ are the feet of the perpendiculars drawn from the point $A$ on the lines $BC, \, \, CD$, respectively. Prove that the orthocenter $\Delta AXY$ lies on the line $BD$.
In the triangle $ABC$ it is known that $2AC=AB$ and $\angle A = 2\angle B$. In this triangle draw the bisector $AL$, and mark point $M$, the midpoint of the side $AB$. It turned out that $CL = ML$. Prove that $\angle B= 30^o$.
(Hilko Danilo)
In a right triangle $ABC$, the lengths of the legs satisfy the condition: $BC =\sqrt2 AC$. Prove that the medians $AN$ and $CM$ are perpendicular.
(Hilko Danilo)
Call a right triangle $ABC$ special if the lengths of its sides $AB, BC$ and$ CA$ are integers, and on each of these sides has some point $X$ (different from the vertices of $ \vartriangle ABC$), for which the lengths of the segments $AX, BX$ and $CX$ are integers numbers. Find at least one special triangle.
(Maria Rozhkova)
In an acute-angled triangle $ABC$, in which $AB<AC$, the point $M$ is the midpoint of the side $BC, K$ is the midpoint of the broken line segment $BAC$ . Prove that $\sqrt2 KM > AB$.
(George Naumenko)
Given a square $ABCD$ with side $10$. On sides BC and $AD$ of this square are selected respectively points $E$ and $F$ such that formed a rectangle $ABEF$. Rectangle $KLMN$ is located so that its the vertices $K, L, M$ and $N$ lie one on each segments $CD, DF, FE$ and $EC$, respectively. It turned out that the rectangles $ABEF$ and $KLMN$ are equal with $AB = MN$. Find the length of segment $AL$.
In the quadrilateral $ABCD$, $AB = BC$ . The point $E$ lies on the line $AB$ is such that $BD= BE$ and $AD \perp DE$. Prove that the perpendicular bisectors to segments $AD, CD$ and $CE$ intersect at one point.
Given a triangle $ABC, O$ is the center of the circumcircle, $M$ is the midpoint of $BC, W$ is the second intersection of the bisector of the angle $C$ with this circle. A line parallel to $BC$ passing through $W$, intersects$ AB$ at the point $K$ so that $BK = BO$. Find the measure of angle $WMB$.
(Anton Trygub)
Let $ABCDEF$ be a hexagon inscribed in a circle in which $AB = BC, CD = DE$ and $EF = FA$. Prove that the lines $AD, BE$ and $CF$ intersect at one point.
Let the point $D$ lie on the arc $AC$ of the circumcircle of the triangle $ABC$ ($AB < BC$), which does not contain the point $B$. On the side $AC$ are selected an arbitrary point $X$ and a point $X'$ for which $\angle ABX= \angle CBX'$. Prove that regardless of the choice of the point $X$, the circle circumscribed around $\vartriangle DXX'$, passes through a fixed point, which is different from point $D$.
(Nikolaev Arseniy)
The points $A, B, C, D$ are selected on the circle as followed so that $AB = BC = CD$. Bisectors of $\angle ABD$ and $\angle ACD$ intersect at point $E$. Find $\angle ABC$, if it is known that $AE \parallel CD$.
Given an acute isosceles triangle $ABC, AK$ and $CN$ are its bisectors, $I$ is their point of intersection. Let point $X$ be the other point of intersection of the circles circumscribed around $\vartriangle ABC$ and $\vartriangle KBN$. Let $M$ be the midpoint of $AC$. Prove that the Euler line of $\vartriangle ABC$ is perpendicular to the line $BI$ if and only if the points $X, I$ and $M$ lie on the same line.
(Kivva Bogdan)
Let $\Gamma$ be a semicircle with diameter $AB$. On this diameter is selected a point $C$, and on the semicircle are selected points $D$ and $E$ so that $E$ lies between $B$ and $D$. It turned out that $\angle ACD = \angle ECB$. The point of intersection of the tangents to $\Gamma$ at points $D$ and $E$ is denoted by $F$. Prove that $\angle EFD=\angle ACD+ \angle ECB$.
Let $BM$ be the median of the triangle $ABC$, in which $AB> BC$. Point $P$ is chosen so that $AB \parallel PC$ and $PM \perp BM$. Prove that $\angle ABM = \angle MBP$.
(Mikhail Standenko)
On the sides $AB$ and $BC$ of the triangle $ABC$, the points $K$ and $M$ are chosen so that $KM \parallel AC$. The segments $AM$ and $KC$ intersect at the point $O$. It is known that $AK =AO$ and $KM =MC$. Prove that $AM=KB$.
Let $BM$ be the median of the triangle $ABC$, in which $AB> BC$. Point $P$ is chosen so that $AB \parallel PC$ and$ PM \perp BM$. The point $Q$ is chosen on the line $BP$ so that $\angle AQC = 90^o$, and the points $B$ and $Q$ lie on opposite sides of the line $AC$. Prove that $AB = BQ$.
(Mikhail Standenko)
Two circles $\omega_1$ and $\omega_2$ intersect at points $A$ and $B$. A line passing through point $B$ intersects $\omega_1$ for the second time at point $C$ and $\omega_2$ at point $D$. The line $AC$ intersects circle $\omega_2$ for the second time at point $F$, and the line $AD$ intersects the circle $\omega_1$ for the second time at point $E$ . Let point $O$ be the center of the circle circumscribed around $\vartriangle AEF$. Prove that $OB \perp CD$.
Circles $\omega_1$ and $\omega_2$ with centers at points $O_1$ and $O_2$ intersect at points $A$ and $B$. A point $C$ is constructed such that $AO_2CO_1$ is a parallelogram. An arbitrary line is drawn through point $A$, which intersects the circles $\omega_1$ and $\omega_2$ for the second time at points $X$ and $Y$, respectively. Prove that $CX = CY$.
(Oleksii Masalitin)
There are $n$ sticks which have distinct integer length. Suppose that it's possible to form a non-degenerate triangle from any $3$ distinct sticks among them. It's also known that there are sticks of lengths $5$ and $12$ among them. What's the largest possible value of $n$ under such conditions?
(Bogdan Rublov)
In triangle $ABC$ $\angle B > 90^\circ$. Tangents to this circle in points $A$ and $B$ meet at point $P$, and the line passing through $B$ perpendicular to $BC$ meets the line $AC$ at point $K$. Prove that $PA = PK$.
(Danylo Khilko)
Let $AL$ be the inner bisector of triangle $ABC$. The circle centered at $B$ with radius $BL$ meets the ray $AL$ at points $L$ and $E$, and the circle centered at $C$ with radius $CL$ meets the ray $AL$ at points $L$ and $D$. Show that $AL^2 = AE\times AD$.
(Mykola Moroz)
Diagonals of a cyclic quadrilateral $ABCD$ intersect at point $P$. The circumscribed circles of triangles $APD$ and $BPC$ intersect the line $AB$ at points $E, F$ correspondingly. $Q$ and $R$ are the projections of $P$ onto the lines $FC, DE$ correspondingly. Show that $AB \parallel QR$.
(Mykhailo Shtandenko)
Let $H$ and $O$ be the orthocenter and the circumcenter of the triangle $ABC$. Line $OH$ intersects the sides $AB, AC$ at points $X, Y$ correspondingly, so that $H$ belongs to the segment $OX$. It turned out that $XH = HO = OY$. Find $\angle BAC$.
(Oleksii Masalitin)
In the acute-angled triangle $ABC$ the angle$ \angle B = 30^o$, point $H$ is the point of intersection of its altitudes. Denote by $O_1, O_2$ the centers of circles inscribed in triangles $ABH ,CBH$ respectively. Find the degree of the angle between the lines $AO_2$ and $CO_1$.
a) the segment $MN$ has a constant length,
b) all circles circumscribed around triangle $DMN$ have a common point
On the sides $AD , BC$ of the square $ABCD$ the points $M, N$ are selected $N$, respectively, such that $AM = BN$. Point $X$ is the foot of the perpendicular from point $D$ on the line $AN$. Prove that the angle $MXC$ is right.
(Mirchev Borislav)
Let two circles be externally tangent at point $C$, with parallel diameters $A_1A_2, B_1B_2$ (i.e. the quadrilateral $A_1B_1B_2A_2$ is a trapezoid with bases $A_1A_2$ and $B_1B_2$ or parallelogram). Circle with the center on the common internal tangent to these two circles, passes through the point of intersection of lines $A_1B_2$ and $A_2B_1$ as well intersects those lines at points $M, N$. Prove that the line $MN$ is perpendicular to the parallel diameters $A_1A_2, B_1B_2$.
(Yuri Biletsky)
Let three circles be externally tangent in pairs, with parallel diameters $A_1A_2, B_1B_2, C_1C_2$ (i.e. each of the quadrilaterals $A_1B_1B_2A_2$ and $A_1C_1C_2A_2$ is a parallelogram or trapezoid, which segment $A_1A_2$ is the base). Prove that $A_1B_2, B_1C_2, C_1A_2$ intersect at one point.
(Yuri Biletsky)
In the triangle $ABC $ the median $BD$ is drawn, which is divided into three equal parts by the points $E $ and $F$ ($BE = EF = FD$). It is known that $AD = AF$ and $AB = 1$. Find the length of the segment $CE$.
2012 Kyiv City MO Round2 8.5
In the triangle $ABC$ on the sides $AB$ and $AC$ outward constructed equilateral triangles $ABD$ and $ACE$. The segments $CD$ and $BE$ intersect at point $F$. It turns out that point $A$ is the center of the circle inscribed in triangle $ DEF$. Find the angle $BAC$.2012 Kyiv City MO Round2 8.5
(Rozhkova Maria)
(Black Maxim)
In the triangle $ABC$ with sides $BC> AC> AB$ the angles between altiude and median drawn from one vertex are considered. Find out at which vertex this angle is the largest of the three.
(Rozhkova Maria)
The circles ${{w} _ {1}}$ and ${{w} _ {2}}$ intersect at points $P$ and $Q$. Let $AB$ and $CD$ be parallel diameters of circles ${ {w} _ {1}}$ and ${{w} _ {2}} $, respectively. In this case, none of the points $A, B, C, D$ coincides with either $P$ or $Q$, and the points lie on the circles in the following order: $A, B, P, Q$ on the circle ${{w} _ {1} }$ and $C, D, P, Q$ on the circle ${{w} _ {2}} $. The lines $AP$ and $BQ$ intersect at the point $X$, and the lines $CP$ and $DQ$ intersect at the point $Y, X \ne Y$. Prove that all lines $XY$ for different diameters $AB$ and $CD$ pass through the same point or are all parallel.
(Serdyuk Nazar)
In the square $ABCD$ on the sides $AD$ and $DC$, the points $M$ and $N$ are selected so that $\angle BMA = \angle NMD = 60 { } ^ \circ $. Find the value of the angle $MBN$.
Inside $\angle BAC = 45 {} ^ \circ$ the point $P$ is selected that the conditions $\angle APB = \angle APC = 45 {} ^ \circ $ are fulfilled. Let the points $M$ and $N$ be the projections of the point $P$ on the lines $AB$ and $AC$, respectively. Prove that $BC\parallel MN $.
(Serdyuk Nazar)
Given a triangle $ ABC $, $ AD $ is its bisector. Let $ E, F $ be the centers of the circles inscribed in the triangles $ ADC $ and $ ADB $, respectively. Denote by $ \omega $ - the circle circumscribed around the triangle $ DEF $, and by $ Q $ - the point of intersection of $ BE $ and $ CF $, and $ H, J, K, M $ - respectively the second point of intersection of the lines $ CE, CF, BE, BF $ with circle $ \omega $. Let $\omega_1, \omega_2 $ the circles be circumscribed around the triangles $ HQJ $ and $ KQM $ Prove that the point of intersection of the circles $\omega_1, \omega_2 $ different from $ Q $ lies on the line $ AD $.
(Kivva Bogdan)
Let $ H $ be the point of intersection of the altitudes $ AP $ and $ CQ $ of the acute-angled triangle $ ABC $. On its median $ BM $ marked points $ E $ and $ F $ so that $ \angle APE = \angle BAC $ and $ \angle CQF = \angle BCA $, and the point $ E $ lies inside the triangle $ APB $, and the point $ F $ lies inside the triangle $ CQB $. Prove that the lines $ AE $, $ CF $ and $ BH $ intersect at one point.
(Vyacheslav Yasinsky)
The median $BM$ is drawn in the triangle $ABC$. It is known that $\angle ABM = 40 {} ^ \circ$ and $\angle CBM = 70 {} ^ \circ $ Find the ratio $AB: BM$.
Given a triangle $ABC$, on the side $BC$ which marked the point $E$ such that $BE \ge CE$. Construct on the sides $AB$ and $AC$ the points $D$ and $F$, respectively, such that $\angle DEF = 90 {} ^ \circ$ and the segment $BF$ is bisected by the segment $DE $.
(Black Maxim)
Three circles are constructed for the triangle $ABC $: the circle ${{w} _ {A}} $ passes through the vertices $B $ and $C $ and intersects the sides $AB $ and $ AC $ at points ${{A} _ {1}} $ and ${{A} _ {2}} $ respectively, the circle ${{w} _ {B}} $ passes through the vertices $A $ and $C $ and intersects the sides $BA $ and $BC $ at the points ${{B} _ {1}} $ and ${{B} _ {2}} $, ${{w} _ {C}} $ passes through the vertices $A $ and $B $ and intersects the sides $CA $ and $CB $ at the points ${{C} _ {1}} $ and ${{C} _ {2}} $. Let ${{A} _ {1}} {{A} _ {2}} \cap {{B} _ {1}} {{B} _ {2}} = {C} '$, ${{A} _ {1}} {{A} _ {2}} \cap {{C} _ {1}} {{C} _ {2}} = {B} '$ ta ${ {B} _ {1}} {{B} _ {2}} \cap {{C} _ {1}} {{C} _ {2}} = {A} '$ is Prove that the perpendiculars, which are omitted from the points ${A} ', \, \, {B}', \, \, {C} '$ to the lines $BC $, $CA $ and $AB $ respectively intersect at one point.
(Rudenko Alexander)
In the acute triangle $ABC$ the side $BC> AB$, and the bisector $BL = AB$. On the segment $BL$ there is a point $M$, for which $\angle AML = \angle BCA$. Prove that $AM = LC$.
The equal segments $AB$ and $CD$ intersect at the point $O$ and divide it by the relation $AO: OB = CO: OD = 1: 2 $. The lines $AD$ and $BC$ intersect at the point $M$. Prove that $DM = MB$.
On the sides $AB, \, \, BC, \, \, CA$ of the triangle $ABC$ the points ${{C} _ {1}}, \, \, {{A} _ { 1}},\, \, {{B} _ {1}}$ are selected respectively, that are different from the vertices. It turned out that $\Delta {{A} _ {1}} {{B} _ {1}} {{C} _ {1}}$ is equilateral, $\angle B{{C}_{1}}{{A}_{1}}=\angle {{C}_{1}}{{B}_{1}}A$ and $\angle B{{A}_{1}}{{C}_{1}}=\angle {{A}_{1}}{{B}_{1}}C$ . Is $ \Delta ABC$ equilateral?
Circles ${{w} _ {1}}$ and ${{w} _ {2}}$ with centers ${{O} _ {1}}$ and ${{O} _ {2}}$ intersect at points $A$ and $B$, respectively. The line ${{O} _ {1}} {{O} _ {2}}$ intersects ${{w} _ {1}}$ at the point $Q$, which does not lie inside the circle ${{w} _ {2}}$, and ${{w} _ {2}}$ at the point $X$ lying inside the circle ${{w} _ {1} }$. Around the triangle ${{O} _ {1}} AX$ circumscribe a circle ${{w} _ {3}}$ intersecting the circle ${{w} _ {1}}$ for the second time in point $T$. The line $QT$ intersects the circle ${{w} _ {3}}$ at the point $K$, and the line $QB$ intersects ${{w} _ {2}}$ the second time at the point $H$. Prove that
a) points $T, \, \, X, \, \, B$ lie on one line;
b) points $K, \, \, X, \, \, H$ lie on one line.
(Vadim Mitrofanov)
The line passing through the center of the equilateral triangle $ ABC $ intersects the lines $ AB $, $ BC $ and $ CA $ at the points $ {{C} _ {1}} $, $ {{A} _ {1}} $ and $ {{B} _ {1}} $, respectively. Let $ {{A} _ {2}} $ be a point that is symmetric $ {{A} _ {1}} $ with respect to the midpoint of $ BC $; the points $ {{B} _ {2}} $ and $ {{C} _ {2}} $ are defined similarly. Prove that the points $ {{A} _ {2}} $, $ {{B} _ {2}} $ and $ {{C} _ {2}} $ lie on the same line tangent to the inscribed circle of the triangle $ ABC $.
(Serdyuk Nazar)
In an acute triangle $ABC$, the bisector $AL$, the altitude $BH$, and the perpendicular bisector of the side $AB$ intersect at one point. Find the value of the angle $BAC$.
In a right triangle, the point $O$ is the center of the circumcircle. Another circle of smaller radius centered at the point $O$ touches the larger leg and the altitude drawn from the top of the right angle. Find the acute angles of a right triangle and the ratio of the radii of the circumscribed and smaller circles.
The bisector of the angle $BAC$of the acute triangle $ABC$ ( $AC \ne AB$) intersects its circumscribed circle for the second time at the point $W$. Let $O$ be the center of the circumscribed circle $\Delta ABC$. The line $AW$ intersects for the second time the circumcribed circles of triangles $OWB$ and $OWC$ at the points $N$ and $M$, respectively. Prove that $BN + MC = AW$.
(Mitrofanov V., Hilko D.)
On the horizontal line from left to right are the points $P, \, \, Q, \, \, R, \, \, S$. Construct a square $ABCD$, for which on the line $AD$ lies lies the point $P$, on the line $BC$ lies the point $Q$, on the line $AB$ lies the point $R$, on the line $CD$ lies the point $S $.
On the sides $AD$ and $BC$ of a rectangle $ABCD$ select points $M, N$ and $P, Q$ respectively such that $AM = MN = ND = BP = PQ = QC$. On segment $QC$ selected point $X$, different from the ends of the segment. Prove that the perimeter of $\vartriangle ANX$ is more than the perimeter of $\vartriangle MDX$.
Let $AC$ be the largest side of the triangle $ABC$. The point M is selected on the ray $AC$ ray, and point $N$ on ray $CA$ such that $CN = CB$ and$ AM = AB$ .
a) Prove that $\vartriangle ABC$ is isosceles if we know that $BM = BN$.
b) Will the statement remain true if $AC$ is not necessarily the largest side of triangle $ABC$?
Triangle $ABC$ is right-angled and isosceles with a right angle at the vertex $C$. On rays $CB$ on vertex $B$ is selected point F, on rays $BA$ on vertex $A$ is selected point G so that $AG = BF.$ The ray $GD$ is drawn so that it intersects with ray $AC$ at point $D$ with $\angle FGD = 45^o$. Find $\angle FDG$.
(Bogdan Rublev)
Find the angles of the triangle $ABC$, if we know that its center $O$ of the circumscribed circle and the center $I_A$ of the exscribed circle (tangent to $BC$) are symmetric wrt $BC$.
(Bogdan Rublev)
Circles $w_1$ and $w_2$ with centers at points $O_1$ and $O_2$ respectively, intersect at points $A$ and $B$. A line passing through point $B$, intersects the circles $w_1$ and $w_2$ at points $C$ and $D$ other than $B$. Tangents to the circles $w_1$ and $w_2$ at points $C$ and $D$ intersect at point $E$. Line $EA$ intersects the circumscribed circle $w$ of triangle $AO_1O_2$ at point $F$. Prove that the length of the segment is $EF$ is equal to the diameter of the circle $w$.
(Vovchenko V., Plotnikov M.)
The median $CM$ is drawn in the triangle $ABC$ intersecting bisector $BL$ at point $O$. Ray $AO$ intersects side $BC$ at point $K$, beyond point $K$ draw the segment $KT = KC$. On the ray $BC$ beyond point $C$ draw a segment $CN = BK$. Prove that is a quadrilateral $ABTN$ is cyclic if and only if $AB = AK$.
(Vladislav Yurashev)
In the triangle $ABC$ it is known that $\angle ACB> 90 {} ^ \circ$, $\angle CBA> 45 {} ^ \circ$. On the sides $AC$ and $AB$, respectively, there are points $P$ and $T$ such that $ABC$ and $PT = BC$. The points ${{P} _ {1}}$ and ${{T} _ {1}}$ on the sides $AC$ and $AB$ are such that $AP = C {{P} _ {1}}$ and $AT = B {{T} _ {1}}$. Prove that $\angle CBA- \angle {{P} _ {1}} {{T} _ {1}} A = 45 {} ^ \circ$.
(Anton Trygub)
On the sides $AB$, $BC$ and $CA$ of the isosceles triangle $ABC$ with the vertex at the point $B$ marked the points $M$, $D$ and $K$ respectively so that $AM = 2DC$ and $\angle AMD = \angle KDC$. Prove that $MD = KD$.
Cut a right triangle with an angle of $30^o$ into three isosceles non-acute triangles, among which there are no congruent ones.
(Maria Rozhkova)
In the acute triangle $ABC$ the orthocenter $H$ and the center of the circumscribed circle $O$ were noted. The line $AO$ intersects the side $BC$ at the point $D$. A perpendicular drawn to the side $BC$ at the point $D$ intersects the heights from the vertices $B$ and $C$ of the triangle $ABC$ at the points $X$ and $Y$ respectively. Prove that the center of the circumscribed circle $\Delta HXY$ is equidistant from the points $B$ and $C$.
(Danilo Hilko)
The point $O$ is the center of the circumcircle of the acute triangle $ABC$. The line $AC$ intersects the circumscribed circle $\Delta ABO$ for second time at the point $X$. Prove that $XO \bot BC$.
In the quadrilateral $ABCD $, $AB = BC $, the point $K $ is the middle of the side $CD $, the rays $BK $ and $AD $ intersect at the point $M $ , the circumscribed circle $ \Delta ABM $ intersects the line $AC $ for the second time at the point $P $. Prove that $\angle BKP = 90 {} ^ \circ $.
(Anton Trygub)
In the quadrilateral $ABCD$ it is known that $\angle ABD= \angle DBC$ and $AD= CD$. Let $DH$ be the altitude of $\vartriangle ABD$. Prove that $| BC - BH | = HA$.
(Hilko Danilo)
The teacher drew a coordinate plane on the board and marked some points on this plane. Unfortunately, Vasya's second-grader, who was on duty, erased almost the entire drawing, except for two points $A (1, 2)$ and $B (3,1)$. Will the excellent Andriyko be able to follow these two points to construct the beginning of the coordinate system point $O (0, 0)$? Point A on the board located above and to the left of point $B$.
In the triangle $ABC$ it is known that$\angle A = 75^o, \angle C = 45^o$. On the ray $BC$ beyond the point $C$ the point $T$ is taken so that $BC = CT$. Let $M$ be the midpoint of the segment $AT$. Find the measure of the $\angle BMC$.
(Anton Trygub)
Through the vertices $A, B$ of the parallelogram $ABCD$ passes a circle that intersects for the second time diagonals $BD$ and $AC$ at points $X$ and $Y$, respectively. The circumsccribed circle of $\vartriangle ADX$ intersects diagonal $AC$ for the second time at the point $Z$. Prove that $AY = CZ$.
The equilateral triangle $ABC$ is inscribed in the circle $w$. Points $F$ and $E$ on the sides $AB$ and $AC$, respectively, are chosen such that $\angle ABE+ \angle ACF = 60^o$. The circumscribed circle of $\vartriangle AFE$ intersects the circle $w$ at the point $D$ for the second time. The rays $DE$ and $DF$ intersect the line $BC$ at the points $X$ and $Y$, respectively. Prove that the center of the inscribed circle of $\vartriangle DXY$ does not depend on the choice of points $F$ and $E$.
(Hilko Danilo)
A circle $k$ of radius $r$ is inscribed in $\vartriangle ABC$, tangent to the circle $k$, which are parallel respectively to the sides $AB, BC$ and $CA$ intersect the other sides of $\vartriangle ABC$ at points $M, N; P, Q$ and $L, T$ ($P, T \in AB$, $L, N \in BC$ and $M, Q\in AC$). Denote by $r_1,r_2,r_3$ the radii of inscribed circles in triangles $MNC, PQA$ and $LTB$. Prove that $r_1+r_2+r_3=r$.
Denote in the triangle $ABC$ by $T_A,T_B,T_C$ the touch points of the exscribed circles of $\vartriangle ABC$, tangent to sides $BC, AC$ and $AB$ respectively. Let $O$ be the center of the circumcircle of $\vartriangle ABC$, and $I$ is the center of it's inscribed circle. It is known that $OI\parallel AC$. Prove that $\angle T_A T_B T_C= 90^o - \frac12 \angle ABC$.
(Anton Trygub)
Let $ABCDE$ be a regular pentagon with center $M$. Point $P \ne M$ is selected on segment $MD$. The circumscribed circle of triangle $ABP$ intersects the line $AE$ for second time at point $Q$, and a line that is perpendicular to the $CD$ and passes through $P$, for second time at the point $R$. Prove that $AR = QR$.
The line $\ell$ is perpendicular to the side $AC$ of the acute triangle $ABC$ and intersects this side at point $K$, and the circumcribed circle $\vartriangle ABC$ at points $P$ and $T$ (point P on the other side of line $AC$, as the vertex $B$). Denote by $P_1$ and $T_1$ - the projections of the points $P$ and $T$ on line $AB$, with the vertices $A, B$ belong to the segment $P_1T_1$. Prove that the center of the circumscribed circle of the $\vartriangle P_1KT_1$ lies on a line containing the midline $\vartriangle ABC$, which is parallel to the side $AC$.
(Anton Trygub)
It is known that in the triangle $ABC$ the smallest side is $BC$. Let $X, Y, K$ and $L$ - points on the sides $AB, AC$ and on the rays $CB, BC$, respectively, are such that $BX = BK = BC =CY =CL$. The line $KX$ intersects the line $LY$ at the point $M$. Prove that the point of intersection of the medians $\vartriangle KLM$ coincides with the center of the inscribed circle $\vartriangle ABC$.
Given a convex quadrilateral $ABCD$, in which $\angle CBD = 90^o$, $\angle BCD =\angle CAD$ and $AD= 2BC$. Prove that $CA =CD$.
(Anton Trygub)
In the acute-angled triangle $ABC$ is drawn the altitude $CH$. A ray beginning at point $C$ that lies inside the $\angle BCA$ and intersects for second time the circles circumscribed circles of $\vartriangle BCH$ and $\vartriangle ABC$ at points $X$ and $Y$ respectively. It turned out that $2CX = CY$. Prove that the line $HX$ bisects the segment $AC$.
(Hilko Danilo)
Let $M$ be the midpoint of the side $AC$ of triangle $ABC$. Inside $\vartriangle BMC$ was found a point $P$ such that $\angle BMP = 90^o$, $\angle ABC+ \angle APC =180^o$. Prove that $\angle PBM + \angle CBM = \angle PCA$.
(Anton Trygub)
A point $P$ was chosen on the smaller arc $BC$ of the circumcircle of the acute-angled triangle $ABC$. Points $R$ and $S$ on the sides$ AB$ and $AC$ are respectively selected so that $CPRS$ is a parallelogram. Point $T$ on the arc $AC$ of the circumscribed circle of $\vartriangle ABC$ such that $BT \parallel CP$. Prove that $\angle TSC = \angle BAC$.
(Anton Trygub)
The sides of the triangle $ABC$ are extended in both directions and on these extensions $6$ equal segments $AA_1 , AA_2, BB_1,BB_2, CC_1, CC_2$ are drawn (fig.). It turned out that all $6$ points $A_1,A_2,B_1,B_2,C_1, C_2$ lie on the same circle, is $\vartriangle ABC$ necessarily equilateral?
(Bogdan Rublev)
Point $C$ lies inside the right angle $AOB$. Prove that the perimeter of triangle $ABC$ is greater than $2 OC$.
In a triangle $ABC$, $\angle B=90^o$ and $\angle A=60^o$, $I$ is the point of intersection of its angle bisectors. A line passing through the point $I$ parallel to the line $AC$, intersects the sides $AB$ and $BC$ at the points $P$ and $T$ respectively. Prove that $3PI+IT=AC$ .
(Anton Trygub)
In an acute triangle $AB$ the heights $ BE$ and $CF$ intersect at the orthocenter $H$, and $M$ is the midpoint of $BC$. The line $EF$ intersects the lines $MH$ and $BC$ at the points $P$ and $T$ , respectively. $AP$ intersects the cirumcscribed circle of $\vartriangle ABC$ for second time at the point $Q$ . Prove that $\angle AQT= 90^o$.
(Fedor Yudin)
Inside the quadrilateral $ABCD$ marked a point $O$ such that $\angle OAD+ \angle OBC = \angle ODA + \angle OCB = 90^o$. Prove that the centers of the circumscribed circles around triangles $OAD$ and $OBC$ as well as the midpoints of the sides $AB$ and $CD$ lie on one circle.
(Anton Trygub)
Let $ABCD$ be an isosceles trapezoid, $AD=BC$, $AB \parallel CD$. The diagonals of the trapezoid intersect at the point $O$, and the point $M$ is the midpoint of the side $AD$. The circle circumscribed around the triangle $BCM$ intersects the side $AD$ at the point $K$. Prove that $OK \parallel AB$.
In the triangle $ABC$, the altitude $BH$ and the angle bisector $BL$ are drawn, the inscribed circle $w$ touches the side of the $AC$ at the point $K$. It is known that $\angle BKA = 45^o$. Prove that the circle with diameter $HL$ touches the circle $w$.
(Anton Trygub)
Two circles $k_1$ and $k_2$ with radii $r_1$ and $r_2$ have no common points. The line$ AB$ is a common internal tangent, and the line $CD$ is a common external tangent to these circles, where $A, C \in k_1$ and $B, D \in k_2$. Knowing that $AB=12$ and $CD =16$, find the value of the product $r_1r_2$.
In triangle $ABC$ the median $BM$ is equal to half of the side $BC$. Show that $\angle ABM = \angle BCA + \angle BAC$.
(Anton Trygub)
Points $D, E, F$ are selected on sides $BC, CA, AB$ correspondingly of triangle $ABC$ with $\angle C = 90^\circ$ such that $\angle DAB = \angle CBE$ and $\angle BEC = \angle AEF$. Show that $DB = DF$.
(Mykhailo Shtandenko)
Let $\omega$ denote the circumscribed circle of triangle $ABC$, $I$ be its incenter, and $K$ be any point on arc $AC$ of $\omega$ not containing $B$. Point $P$ is symmetric to $I$ with respect to point $K$. Point $T$ on arc $AC$ of $\omega$ containing point $B$ is such that $\angle KCT = \angle PCI$. Show that the bisectors of angles $AKT$ and $ATC$ meet on line $CI$.
(Anton Trygub)
Let $AH_A, BH_B, CH_C$ be the altitudes of triangle $ABC$. Prove that if $\frac{H_BC}{AC} = \frac{H_CA}{AB}$, then the line symmetric to $BC$ with respect to line $H_BH_C$ is tangent to the circumscribed circle of triangle $H_BH_CA$.
(Mykhailo Bondarenko)
Let $ABCD$ be the circumscribed quadrilateral. Suppose that there exists some line $l$ parallel to $BD$ which is tangent to the inscribed circles of triangles $ABC, CDA$. Show that $l$ passes through the incenter of $BCD$ or through the incenter of $DAB$.
(Fedir Yudin)
1984 - 1993
On the extension of the largest side $AC$ of the triangle $ABC$ set aside the segment $CM$ such that $CM = BC$. Prove that the angle $ABM$ is obtuse or right.
Inside the convex quadrilateral $ABCD$ lies the point $'M$. Reflect it symmetrically with respect to the midpoints of the sides of the quadrilateral and connect the obtained points so that they form a convex quadrilateral. Prove that the area of this quadrilateral does not depend on the choice of the point $M$.
Construct a right triangle given the lengths of segments of the medians $m_a,m_b$ corresponding on its legs.
The polygon $P$, cut out of paper, is bent in a straight line and both halves are glued. Can the perimeter of the polygon $Q$ obtained by gluing be larger than the perimeter of the polygon $P$?
Using a ruler with a length of $20$ cm and a compass with a maximum deviation of $10$ cm to connect the segment given two points lying at a distance of $1$ m.
The vertices of a regular hexagon $A_1,A_2,...,A_6$ lie respectively on the sides $B_1B_2$, $B_2B_3$, $B_3B_4$, $B_4B_5$, $B_5B_6$, $B_6B_1$ of a convex hexagon $B_1B_2B_3B_4B_5B_6$. Prove that $$S_{B_1B_2B_3B_4B_5B_6} \le \frac32 S_{A_1A_2A_3A_4A_5A_6}.$$
$O$ is the point of intersection of the diagonals of the convex quadrilateral $ABCD$. It is known that the areas of triangles $AOB, BOC, COD$ and $DOA$ are expressed in natural numbers. Prove that the product of these areas cannot end in $1985$.
The longest diagonal of a convex hexagon is $2$. Is there necessarily a side or diagonal in this hexagon whose length does not exceed $1$?
Outside the parallelogram $ABCD$ on its sides $AB$ and $BC$ are constructed equilateral triangles $ABK$, and $BCM$. Prove that the triangle $KMD$ is equilateral.
Segment $AB$ on the surface of the cube is the shortest polyline on the surface that connects $A$ and $B$. Triangle $ABC$ consisted of such segments $AB, BC,CA$. What may be the sum of angles of such triangle if none of the vertex is on the edge of the cube ?
Prove that the sum of the lengths of the diagonals of an arbitrary quadrilateral is less than the sum of the lengths of its sides.
A rectangle is said to be inscribed in a parallelogram if its vertices lie one on each side of the parallelogram. On the larger side $AB$ of the parallelogram $ABCD$, find all those points $K$ that are the vertices of the rectangles inscribed in $ABCD$.
The faces of a convex polyhedron are congruent parallelograms. Prove that they are all rhombuses.
Prove that inside any convex hexagon with pairs of parallel sides of area $1$, you can draw a triangle of area $1/2$.
Let $E$ be a point on the side $AD$ of the square $ABCD$. Find such points $M$ and $K$ on the sides $AB$ and $BC$ respectively, such that the segments $MK$ and $EC$ are parallel, and the quadrilateral $MKCE$ has the largest area.
The circle inscribed in the triangle $ABC$ touches the side BC at point $K$. Prove that the segment $AK$ is longer than the diameter of the circle.
Construct a trapezoid given the midpoints of the legs, the point of intersection of the diagonals and the foot of the perpendicular, drawn from this point on the larger base.
Inscribe a triangle in a given circle, if its smallest side is known, as well as the point of intersection of altitudes lying outside the circle.
Is there a $1987$-gon with consecutive sides lengths $1, 2, 3,..., 1986, 1987$, in which you can fit a circle?
In a right circular cone with the radius of the base $R$ and the height $h$ are $n$ spheres of the same radius $r$ ($n \ge 3$). Each ball touches the base of the cone, its side surface and other two balls. Determine $r$.
An isosceles trapezoid is divided by each diagonal into two isosceles triangles. Determine the angles of the trapezoid.
In the triangle $ABC$, the angle bisector $AK$ is drawn. The center of the circle inscribed in the triangle $AKC$ coincides with the center of the circle, circumscribed around the triangle $ABC$. Determine the angles of triangle $ABC$.
Each side of a convex quadrilateral is less than $20$ cm. Prove that you can specify the vertex of the quadrilateral, the distance from which to any point $Q$ inside the quadrilateral is less than $15$ cm.
Given an arbitrary tetrahedron. Prove that its six edges can be divided into two triplets so that from each triple it was possible to form a triangle.
The student drew a triangle $ABC$ on the board, in which $AB>BC$. On the side $AB$ is taken point $D$ such that $BD = AC$. Let points $E$ and $F$ be the midpoints of the segments $AD$ and $BC$ respectively. Then the whole picture was erased, leaving only dots $E$ and $F$. Restore triangle $ABC$.
Let $h_a,h_b,h_c$ be the altitudes, and let $m_a,m_b,m_c$ be the medians of the acute triangle drawn to the sides $a, b, c$ respectively. Let $r$ and $R$ be the radii of the inscribed and circumscribed circles. Prove that$$\frac{m_a}{h_a}+\frac{m_b}{h_b}+\frac{m_c}{h_c} <1+\frac{R}{r}.$$
The student drew a right triangle $ABC$ on the board with a right angle at the vertex $B$ and inscribed in it an equilateral triangle $KMP$ such that the points $K, M, P$ lie on the sides $AB, BC, AC$, respectively, and $KM \parallel AC$. Then the picture was erased, leaving only points $A, P$ and $C$. Restore erased points and lines.
The perimeter of the triangle $ABC$ is equal to $2p$, the length of the side$ AC$ is equal to $b$, the angle $ABC$ is equal to $\beta$. A circle with center at point $O$, inscribed in this triangle, touches the side $BC$ at point $K$. Calculate the area of the triangle $BOK$.
The base of the quadrangular pyramid $SABCD$ is a quadrilateral $ABCD$, the diagonals of which are perpendicular. The apex of the pyramid is projected at intersection point $O$ of the diagonals of the base. Prove that the feet of the perpendiculars drawn from point $O$ to the side faces of the pyramid lie on one circle.
Given a triangle with sides $a, b, c$ that satisfy $\frac{a}{b+c}=\frac{c}{a+b}$. Determine the angles of this triangle, if you know that one of them is equal to $120^0$.
A line passes through the center $O$ of an equilateral triangle $ABC$ and intersects the side $BC$. At what angle wrt $BC$ should this line be drawn this line so that its segment inside the triangle has the smallest possible length?
Let $\alpha, \beta, \gamma$ be the angles of some triangle. Prove that there is a triangle whose sides are equal to $\sin \alpha$, $\sin \beta$, $\sin \gamma$.
The angle bisectors $AA_1$ and $BB_1$ of the triangle ABC intersect at point $O$. Prove that when the angle $C$ is equal to $60^0$, then $OA_1=OB_1$
Construct a quadrilateral with three sides $1$, $4$ and $3$ so that a circle could be circumscribed around it.
A circle centered at a point $(0, 1)$ on the coordinate plane intersects the parabola $y = x^2$ at four points: $A, B, C, D.$ Find the largest possible value of the area of the quadrilateral $ABCD$.
Prove that the sum of the distances from any point in space from the vertices of a cube with edge $a$ is not less than $4\sqrt3 a$.
The side $AC$ of triangle $ABC$ is extended at segment $CD = AB = 1$. It is known that $\angle ABC = 90^o$, $\angle CBD = 30^o$. Calculate $AC$.
Given a circle, point $C$ on it and point $A$ outside the circle. The equilateral triangle $ACP$ is constructed on the segment $AC$. Point $C$ moves along the circle. What trajectory will the point $P$ describe?
Inside the rectangle $ABCD$ is taken a point $M$ such that $\angle BMC + \angle AMD = 180^o$. Determine the sum of the angles $BCM$ and $DAM$.
On the sides of the parallelogram $ABCD$ outside it are constructed equilateral triangles $ABM$, $BCN$, $CDP$, $ADQ$. Prove that $MNPQ$ is a parallelogram.
Construct a square, if you know its center and two points that lie on adjacent sides.
The diagonals of the convex quadrilateral $ABCD$ are mutually perpendicular. Through the midpoint of the sides $AB$ and $AD$ draw lines, which are perpendicular to the opposite sides. Prove that they intersect on line $AC$.
The point $M$ is the midpoint of the median $BD$ of the triangle $ABC$, the area of which is $S$. The line $AM$ intersects the side $BC$ at the point $K$. Determine the area of the triangle $BKM$.
A parallelogram is inscribed in a quadrilateral, two opposite vertices of which are the midpoints of the opposite sides of the quadrilateral. Determine the area of such a parallelogram if the area of the quadrilateral is equal to $S_o$.
A parallelogram is constructed on the coordinate plane, the coordinates of which are integers. It is known that inside the parallelogram and on its contour there are other (except vertices) points with integer coordinates. Prove that the area of the parallelogram is not less than $3/2$.
In an acute-angled triangle $ABC$ on the sides $AB$, $BC$, $AC$, the points $C_1$, $A_1$, and $B_1$ are marked such that the segments $AA_1$, $BB_1$, $CC_1$ intersect at some point $O$ and the angles $AA_1C$, $BB_1A$, $CC_1B$ are equal. Prove that $AA_1$, $BB_1$, and $CC_1$ are the altitudes of the triangle.
Diagonal sections of a regular 8-gon pyramid, which are drawn through the smallest and largest diagonals of the base, are equal. At what angle is the plane passing through the vertex, the pyramids and the smallest diagonal of the base inclined to the base?
Lines that are drawn perpendicular to the faces of a triangular pyramid through the centers of the inscribed circles intersect at one point. Prove that the sums of the opposite edges of such a pyramid are equal to each other.
Inside a right angle is given a point $A$. Construct an equilateral triangle, one of the vertices of which is point $A$, and two others lie on the sides of the angle (one on each side).
Find the locus of the intersection points of the medians all triangles inscribed in a given circle.
Two lines divide a square into $4$ figures of the same area. Prove that all these figures are congruent.
Prove that a bounded figure cannot have more than one center of symmetry.
In the triangle $ABC$, the median $BD$ is drawn and through its midpoint and vertex $A$ the line $\ell$. Thus the triangle $ABC$ is divided into three triangles and one quadrilateral. Determine the areas of these figures if the area of triangle $ABC$ is equal to $S$.
The base of the pyramid is a triangle $ABC$, in which $\angle ACB= 30^o$, and the length of the median from the vertex $B$ is twice less than the side $AC$ and is equal to $\alpha$ . All side edges of the pyramid are inclined to the plane of the base at an angle $a$. Determine the cross-sectional area of the pyramid with a plane passing through the vertex $B$ parallel to the edge $AD$ and inclined to the plane of the base at an angle of $\beta$,
In the triangle $ABC$, $\angle .ACB = 60^o$, and the bisectors $AA_1$ and $BB_1$ intersect at the point $M$. Prove that $MB_1 = MA_1$.
The diameter of a circle of radius $R$ is divided into $4$ equal parts. The point $M$ is taken on the circle. Prove that the sum of the squares of the distances from the point $M$ to the points of division (together with the ends of the diameter) does not depend on the choice of the point $M$. Calculate this sum.
Let $a, b, c$ be the lengths of the sides of a triangle, and let $S$ be its area. We know that $S = \frac14 (c^2 - a^2 - b^2)$. Prove that $\angle C = 135^o$.
The circle divides each side of an equilateral triangle into three equal parts. Prove that the sum of the squares of the distances from any point of this circle to the vertices of the triangle is constant.
The diameter of a circle of radius $R$ is divided into $2n$ equal parts. The point $M$ is taken on the circle. Prove that the sum of the squares of the distances from the point $M$ to the points of division (together with the ends of the diameter) does not depend on the choice of the point $M$. Calculate this sum.
Prove theat for an arbitrary triangle holds the inequality$$a \cos A+ b \cos B + c \cos C \le p ,$$where $a, b, c$ are the sides of the triangle, $A, B, C$ are the angles, $p$ is the semiperimeter.
Prove that for the sides $a, b, c$, the angles $A, B, C$ and the area $S$ of the triangle holds$$\cot A+ \cot B + \cot C = \frac{a^2+b^2+c^2}{4S}.$$
Two cubes are inscribed in a sphere of radius $R$. Calculate the sum of squares of all segments connecting the vertices of one cube with the vertices of the other cube
Let $a, b, c$ be the lengths of the sides of a triangle, and let $S$ be it's area. Prove that$$S \le \frac{a^2+b^2+c^2}{4\sqrt3}$$and the equality is achieved only for an equilateral triangle.
sources: matholymp.org.ua ,matholymp.com.ua
No comments:
Post a Comment