geometry problems from ELMO and it's Shortlist (SHL), where available

with aops links in the names

2009 ELMO problem 2

Let $ABC$ be a triangle such that $AB < AC$. Let $P$ lie on a line through $A$ parallel to line $BC$ such that $C$ and $P$ are on the same side of line $AB$. Let $M$ be the midpoint of segment $BC$. Define $D$ on segment $BC$ such that $\angle BAD = \angle CAM$, and define $T$ on the extension of ray $CB$ beyond $B$ so that $\angle BAT = \angle CAP$. Given that lines $PC$ and $AD$ intersect at $Q$, that lines $PD$ and $AB$ intersect at $R$, and that $S$ is the midpoint of segment $DT$, prove that if $A$,$P$,$Q$, and $R$ lie on a circle, then $Q$, $R$, and $S$ are collinear.

Let $ABCDEFG$ be a regular heptagon with center $O$. Let $M$ be the centroid of $\triangle ABD$. Prove that $\cos^2(\angle GOM)$ is rational and determine its value.

2015 ELMO Shortlist G3 problem 3

Let $\omega$ be a circle and $C$ a point outside it; distinct points $A$ and $B$ are selected on $\omega$ so that $\overline{CA}$ and $\overline{CB}$ are tangent to $\omega$. Let $X$ be the reflection of $A$ across the point $B$, and denote by $\gamma$ the circumcircle of triangle $BXC$. Suppose $\gamma$ and $\omega$ meet at $D \neq B$ and line $CD$ intersects $\omega$ at $E \neq D$. Prove that line $EX$ is tangent to the circle $\gamma$.

Oscar is drawing diagrams with trash can lids and sticks. He draws a triangle $ABC$ and a point $D$ such that $DB$ and $DC$ are tangent to the circumcircle of $ABC$. Let $B'$ be the reflection of $B$ over $AC$ and $C'$ be the reflection of $C$ over $AB$. If $O$ is the circumcenter of $DB'C'$, help Oscar prove that $AO$ is perpendicular to $BC$.

Carl is given three distinct non-parallel lines $\ell_1, \ell_2, \ell_3$ and a circle $\omega$ in the plane. In addition to a normal straightedge, Carl has a special straightedge which, given a line $\ell$ and a point $P$, constructs a new line passing through $P$ parallel to $\ell$. (Carl does not have a compass.) Show that Carl can construct a triangle with circumcircle $\omega$ whose sides are parallel to $\ell_1,\ell_2,\ell_3$ in some order.

Let $\triangle ABC$ be an acute triangle with incenter $I$ and circumcenter $O$. The incircle touches sides $BC,CA,$ and $AB$ at $D,E,$ and $F$ respectively, and $A'$ is the reflection of $A$ over $O$. The circumcircles of $ABC$ and $A'EF$ meet at $G$, and the circumcircles of $AMG$ and $A'EF$ meet at a point $H\neq G$, where $M$ is the midpoint of $EF$. Prove that if $GH$ and $EF$ meet at $T$, then $DT\perp EF$.

Let triangle $ABC$ have altitudes $BE$ and $CF$ which meet at $H$. The reflection of $A$ over $BC$ is $A'$. Let $(ABC)$ meet $(AA'E)$ at $P$ and $(AA'F)$ at $Q$. Let $BC$ meet $PQ$ at $R$. Prove that $EF \parallel HR$.

Let $ABC$ be an acute scalene triangle and let $P$ be a point in the plane. For any point $Q\neq A,B,C$, define $T_A$ to be the unique point such that $\triangle T_ABP \sim \triangle T_AQC$ and $\triangle T_ABP, \triangle T_AQC$ are oriented in the same direction (clockwise or counterclockwise). Similarly define $T_B, T_C$.

a) Find all $P$ such that there exists a point $Q$ with $T_A,T_B,T_C$ all lying on the circumcircle of $\triangle ABC$. Call such a pair $(P,Q)$ a tasty pair with respect to $\triangle ABC$.

b) Keeping the notations from a), determine if there exists a tasty pair which is also tasty with respect to $\triangle T_AT_BT_C$.

with aops links in the names

ELMO is a math olympiad at MOP

ELMO 1999, 2003, 2009-19 & ELSMO 2012-14, 2016-19

ELMO Shortlists 2010-14, 2017 -19

ELMO 1999, 2003, 2009-19 & ELSMO 2012-14, 2016-19

ELMO Shortlists 2010-14, 2017 -19

some files have solutions

more USA Competitions in appendix: UK USA Canada

1999, 2003, 2009 - 2019

In nonisosceles triangle $ABC$ the excenters of the triangle opposite $B$ and $C$ be $X_B$ and $X_C$, respectively. Let the external angle bisector of $A$ intersect the circumcircle of $\triangle ABC$ again at $Q$. Prove that $QX_B = QB = QC = QX_C$.

Let $ABCDEF$ be a convex equilateral hexagon with sides of length $1$. Let $R_1$ be the area of the region contained within both $ACE$ and $BDF$, and let $R_2$ be the area of the region within the hexagon outside both triangles. Prove that: $ \min \{ [ACE], [BDF] \} + R_2 - R_1 \le \frac{3\sqrt{3}}{4}. $

2009 ELMO problem 2

Let $ABC$ be a triangle such that $AB < AC$. Let $P$ lie on a line through $A$ parallel to line $BC$ such that $C$ and $P$ are on the same side of line $AB$. Let $M$ be the midpoint of segment $BC$. Define $D$ on segment $BC$ such that $\angle BAD = \angle CAM$, and define $T$ on the extension of ray $CB$ beyond $B$ so that $\angle BAT = \angle CAP$. Given that lines $PC$ and $AD$ intersect at $Q$, that lines $PD$ and $AB$ intersect at $R$, and that $S$ is the midpoint of segment $DT$, prove that if $A$,$P$,$Q$, and $R$ lie on a circle, then $Q$, $R$, and $S$ are collinear.

by David Rush

2009 ELMO problem 5Let $ABCDEFG$ be a regular heptagon with center $O$. Let $M$ be the centroid of $\triangle ABD$. Prove that $\cos^2(\angle GOM)$ is rational and determine its value.

by Evan o'Dorney

2010 ELMO Shortlist G1

Let $ABC$ be a triangle. Let $A_1$, $A_2$ be points on $AB$ and $AC$ respectively such that $A_1A_2 \parallel BC$ and the circumcircle of $\triangle AA_1A_2$ is tangent to $BC$ at $A_3$. Define $B_3$, $C_3$ similarly. Prove that $AA_3$, $BB_3$, and $CC_3$ are concurrent.

Let $ABC$ be a triangle. Let $A_1$, $A_2$ be points on $AB$ and $AC$ respectively such that $A_1A_2 \parallel BC$ and the circumcircle of $\triangle AA_1A_2$ is tangent to $BC$ at $A_3$. Define $B_3$, $C_3$ similarly. Prove that $AA_3$, $BB_3$, and $CC_3$ are concurrent.

by Carl Lian

2010 ELMO Shortlist G2

Given a triangle $ABC$, a point $P$ is chosen on side $BC$. Points $M$ and $N$ lie on sides $AB$ and $AC$, respectively, such that $MP \parallel AC$ and $NP \parallel AB$. Point $P$ is reflected across $MN$ to point $Q$. Show that triangle $QMB$ is similar to triangle $CNQ$.

A circle $\omega$ not passing through any vertex of $\triangle ABC$ intersects each of the segments $AB$, $BC$, $CA$ in 2 distinct points. Prove that the incenter of $\triangle ABC$ lies inside $\omega$.

Given a triangle $ABC$, a point $P$ is chosen on side $BC$. Points $M$ and $N$ lie on sides $AB$ and $AC$, respectively, such that $MP \parallel AC$ and $NP \parallel AB$. Point $P$ is reflected across $MN$ to point $Q$. Show that triangle $QMB$ is similar to triangle $CNQ$.

by Brian Hamrick

2010 ELMO Shortlist G3A circle $\omega$ not passing through any vertex of $\triangle ABC$ intersects each of the segments $AB$, $BC$, $CA$ in 2 distinct points. Prove that the incenter of $\triangle ABC$ lies inside $\omega$.

by Evan O' Dorney

2010 ELMO Shortlist G4 problem 6

Let $ABC$ be a triangle with circumcircle $\omega$, incenter $I$, and $A$-excenter $I_A$. Let the incircle and the $A$-excircle hit $BC$ at $D$ and $E$, respectively, and let $M$ be the midpoint of arc $BC$ without $A$. Consider the circle tangent to $BC$ at $D$ and arc $BAC$ at $T$. If $TI$ intersects $\omega$ again at $S$, prove that $SI_A$ and $ME$ meet on $\omega$.

Let $ABC$ be a triangle with circumcircle $\omega$, incenter $I$, and $A$-excenter $I_A$. Let the incircle and the $A$-excircle hit $BC$ at $D$ and $E$, respectively, and let $M$ be the midpoint of arc $BC$ without $A$. Consider the circle tangent to $BC$ at $D$ and arc $BAC$ at $T$. If $TI$ intersects $\omega$ again at $S$, prove that $SI_A$ and $ME$ meet on $\omega$.

by Amol Aggarwal

2010 ELMO Shortlist G5 problem 1

Determine all (not necessarily finite) sets $S$ of points in the plane such that given any four distinct points in $S$, there is a circle passing through all four or a line passing through some three.

Determine all (not necessarily finite) sets $S$ of points in the plane such that given any four distinct points in $S$, there is a circle passing through all four or a line passing through some three.

by Carl Lian

Let $ABC$ be a triangle with circumcircle $\Omega$. $X$ and $Y$ are points on $\Omega$ such that $XY$ meets $AB$ and $AC$ at $D$ and $E$, respectively. Show that the midpoints of $XY$, $BE$, $CD$, and $DE$ are concyclic.

by Carl Lian

2011 ELMO Shortlist G1 problem 1

Let $ABCD$ be a convex quadrilateral. Let $E,F,G,H$ be points on segments $AB$, $BC$, $CD$, $DA$, respectively, and let $P$ be the intersection of $EG$ and $FH$. Given that quadrilaterals $HAEP$, $EBFP$, $FCGP$, $GDHP$ all have inscribed circles, prove that $ABCD$ also has an inscribed circle.

2011 ELMO Shortlist G2

Let $ABCD$ be a convex quadrilateral. Let $E,F,G,H$ be points on segments $AB$, $BC$, $CD$, $DA$, respectively, and let $P$ be the intersection of $EG$ and $FH$. Given that quadrilaterals $HAEP$, $EBFP$, $FCGP$, $GDHP$ all have inscribed circles, prove that $ABCD$ also has an inscribed circle.

by Evan O'Dorney

Let $\omega,\omega_1,\omega_2$ be three mutually tangent circles such that $\omega_1,\omega_2$ are externally tangent at $P$, $\omega_1,\omega$ are internally tangent at $A$, and $\omega,\omega_2$ are internally tangent at $B$. Let $O,O_1,O_2$ be the centers of $\omega,\omega_1,\omega_2$, respectively. Given that $X$ is the foot of the perpendicular from $P$ to $AB$, prove that $\angle{O_1XP}=\angle{O_2XP}$.

by David Yang.

2011 ELMO Shortlist G3
Let $ABC$ be a triangle. Draw circles $\omega_A$, $\omega_B$, and $\omega_C$ such that $\omega_A$ is tangent to $AB$ and $AC$, and $\omega_B$ and $\omega_C$ are defined similarly. Let $P_A$ be the insimilicenter of $\omega_B$ and $\omega_C$. Define $P_B$ and $P_C$ similarly. Prove that $AP_A$, $BP_B$, and $CP_C$ are concurrent.

by Tom Lu

Prove that for any convex pentagon $A_1A_2A_3A_4A_5$, there exists a unique pair of points $\{P,Q\}$ (possibly with $P=Q$) such that $\measuredangle{PA_i A_{i-1}} = \measuredangle{A_{i+1}A_iQ}$ for $1\le i\le 5$, where indices are taken $\pmod5$ and angles are directed $\pmod\pi$.

by Calvin Deng

2012 ELMO Shortlist G1 problem 1

In acute triangle $ABC$, let $D,E,F$ denote the feet of the altitudes from $A,B,C$, respectively, and let $\omega$ be the circumcircle of $\triangle AEF$. Let $\omega_1$ and $\omega_2$ be the circles through $D$ tangent to $\omega$ at $E$ and $F$, respectively. Show that $\omega_1$ and $\omega_2$ meet at a point $P$ on $BC$ other than $D$.

In acute triangle $ABC$, let $D,E,F$ denote the feet of the altitudes from $A,B,C$, respectively, and let $\omega$ be the circumcircle of $\triangle AEF$. Let $\omega_1$ and $\omega_2$ be the circles through $D$ tangent to $\omega$ at $E$ and $F$, respectively. Show that $\omega_1$ and $\omega_2$ meet at a point $P$ on $BC$ other than $D$.

by Ray Li

2012 ELMO Shortlist G2

In triangle $ABC$, $P$ is a point on altitude $AD$. $Q,R$ are the feet of the perpendiculars from $P$ to $AB,AC$, and $QP,RP$ meet $BC$ at $S$ and $T$ respectively. the circumcircles of $BQS$ and $CRT$ meet $QR$ at $X,Y$.

a) Prove $SX,TY, AD$ are concurrent at a point $Z$.

b) Prove $Z$ is on $QR$ iff $Z=H$, where $H$ is the orthocenter of $ABC$.

In triangle $ABC$, $P$ is a point on altitude $AD$. $Q,R$ are the feet of the perpendiculars from $P$ to $AB,AC$, and $QP,RP$ meet $BC$ at $S$ and $T$ respectively. the circumcircles of $BQS$ and $CRT$ meet $QR$ at $X,Y$.

a) Prove $SX,TY, AD$ are concurrent at a point $Z$.

b) Prove $Z$ is on $QR$ iff $Z=H$, where $H$ is the orthocenter of $ABC$.

by Ray Li

2012 ELMO Shortlist G3

$ABC$ is a triangle with incenter $I$. The foot of the perpendicular from $I$ to $BC$ is $D$, and the foot of the perpendicular from $I$ to $AD$ is $P$. Prove that $\angle BPD = \angle DPC$.

$ABC$ is a triangle with incenter $I$. The foot of the perpendicular from $I$ to $BC$ is $D$, and the foot of the perpendicular from $I$ to $AD$ is $P$. Prove that $\angle BPD = \angle DPC$.

by Alex Zhu

2012 ELMO Shortlist G4

Circles $\Omega$ and $\omega$ are internally tangent at point $C$. Chord $AB$ of $\Omega$ is tangent to $\omega$ at $E$, where $E$ is the midpoint of $AB$. Another circle, $\omega_1$ is tangent to $\Omega, \omega,$ and $AB$ at $D,Z,$ and $F$ respectively. Rays $CD$ and $AB$ meet at $P$. If $M$ is the midpoint of major arc $AB$, show that $\tan \angle ZEP = \tfrac{PE}{CM}$.

Circles $\Omega$ and $\omega$ are internally tangent at point $C$. Chord $AB$ of $\Omega$ is tangent to $\omega$ at $E$, where $E$ is the midpoint of $AB$. Another circle, $\omega_1$ is tangent to $\Omega, \omega,$ and $AB$ at $D,Z,$ and $F$ respectively. Rays $CD$ and $AB$ meet at $P$. If $M$ is the midpoint of major arc $AB$, show that $\tan \angle ZEP = \tfrac{PE}{CM}$.

by Ray Li

2012 ELMO Shortlist G5 problem 5

Let $ABC$ be an acute triangle with $AB<AC$, and let $D$ and $E$ be points on side $BC$ such that $BD=CE$ and $D$ lies between $B$ and $E$. Suppose there exists a point $P$ inside $ABC$ such that $PD\parallel AE$ and $\angle PAB=\angle EAC$. Prove that $\angle PBA=\angle PCA$.

Let $ABC$ be an acute triangle with $AB<AC$, and let $D$ and $E$ be points on side $BC$ such that $BD=CE$ and $D$ lies between $B$ and $E$. Suppose there exists a point $P$ inside $ABC$ such that $PD\parallel AE$ and $\angle PAB=\angle EAC$. Prove that $\angle PBA=\angle PCA$.

by Calvin Deng

2012 ELMO Shortlist G6

In $\triangle ABC$, $H$ is the orthocenter, and $AD,BE$ are arbitrary cevians. Let $\omega_1, \omega_2$ denote the circles with diameters $AD$ and $BE$, respectively. $HD,HE$ meet $\omega_1,\omega_2$ again at $F,G$. $DE$ meets $\omega_1,\omega_2$ again at $P_1,P_2$ respectively. $FG$ meets $\omega_1,\omega_2$ again $Q_1,Q_2$ respectively. $P_1H,Q_1H$ meet $\omega_1$ at $R_1,S_1$ respectively. $P_2H,Q_2H$ meet $\omega_2$ at $R_2,S_2$ respectively. Let $P_1Q_1\cap P_2Q_2 = X$, and $R_1S_1\cap R_2S_2=Y$. Prove that $X,Y,H$ are collinear.

In $\triangle ABC$, $H$ is the orthocenter, and $AD,BE$ are arbitrary cevians. Let $\omega_1, \omega_2$ denote the circles with diameters $AD$ and $BE$, respectively. $HD,HE$ meet $\omega_1,\omega_2$ again at $F,G$. $DE$ meets $\omega_1,\omega_2$ again at $P_1,P_2$ respectively. $FG$ meets $\omega_1,\omega_2$ again $Q_1,Q_2$ respectively. $P_1H,Q_1H$ meet $\omega_1$ at $R_1,S_1$ respectively. $P_2H,Q_2H$ meet $\omega_2$ at $R_2,S_2$ respectively. Let $P_1Q_1\cap P_2Q_2 = X$, and $R_1S_1\cap R_2S_2=Y$. Prove that $X,Y,H$ are collinear.

by Ray Li

Let $\triangle ABC$ be an acute triangle with circumcenter $O$ such that $AB<AC$, let $Q$ be the intersection of the external bisector of $\angle A$ with $BC$, and let $P$ be a point in the interior of $\triangle ABC$ such that $\triangle BPA$ is similar to $\triangle APC$. Show that $\angle QPA + \angle OQB = 90^{\circ}$.

Let $ABC$ be a triangle with incenter $I$. Let $U$, $V$ and $W$ be the intersections of the angle bisectors of angles $A$, $B$, and $C$ with the incircle, so that $V$ lies between $B$ and $I$, and similarly with $U$ and $W$. Let $X$, $Y$, and $Z$ be the points of tangency of the incircle of triangle $ABC$ with $BC$, $AC$, and $AB$, respectively. Let triangle $UVW$ be the

by Alex Zhu

2013 ELMO Shortlist G1Let $ABC$ be a triangle with incenter $I$. Let $U$, $V$ and $W$ be the intersections of the angle bisectors of angles $A$, $B$, and $C$ with the incircle, so that $V$ lies between $B$ and $I$, and similarly with $U$ and $W$. Let $X$, $Y$, and $Z$ be the points of tangency of the incircle of triangle $ABC$ with $BC$, $AC$, and $AB$, respectively. Let triangle $UVW$ be the

*David Yang triangle*of $ABC$ and let $XYZ$ be the*Scott Wu triangle*of $ABC$. Prove that the*David Yang*and*Scott Wu triangles*of a triangle are congruent if and only if $ABC$ is equilateral.
by Owen Goff

2013 ELMO Shortlist G2

Let $ABC$ be a scalene triangle with circumcircle $\Gamma$, and let $D$,$E$,$F$ be the points where its incircle meets $BC$, $AC$, $AB$ respectively. Let the circumcircles of $\triangle AEF$, $\triangle BFD$, and $\triangle CDE$ meet $\Gamma$ a second time at $X,Y,Z$ respectively. Prove that the perpendiculars from $A,B,C$ to $AX,BY,CZ$ respectively are concurrent.

Let $ABC$ be a scalene triangle with circumcircle $\Gamma$, and let $D$,$E$,$F$ be the points where its incircle meets $BC$, $AC$, $AB$ respectively. Let the circumcircles of $\triangle AEF$, $\triangle BFD$, and $\triangle CDE$ meet $\Gamma$ a second time at $X,Y,Z$ respectively. Prove that the perpendiculars from $A,B,C$ to $AX,BY,CZ$ respectively are concurrent.

by Michael Kural

In $\triangle ABC$, a point $D$ lies on line $BC$. The circumcircle of $ABD$ meets $AC$ at $F$ (other than $A$), and the circumcircle of $ADC$ meets $AB$ at $E$ (other than $A$). Prove that as $D$ varies, the circumcircle of $AEF$ always passes through a fixed point other than $A$, and that this point lies on the median from $A$ to $BC$.
by Allen Liu

2013 ELMO Shortlist G4 problem 4

Triangle $ABC$ is inscribed in circle $\omega$. A circle with chord $BC$ intersects segments $AB$ and $AC$ again at $S$ and $R$, respectively. Segments $BR$ and $CS$ meet at $L$, and rays $LR$ and $LS$ intersect $\omega$ at $D$ and $E$, respectively. The internal angle bisector of $\angle BDE$ meets line $ER$ at $K$. Prove that if $BE = BR$, then $\angle ELK = \tfrac{1}{2} \angle BCD$.

Triangle $ABC$ is inscribed in circle $\omega$. A circle with chord $BC$ intersects segments $AB$ and $AC$ again at $S$ and $R$, respectively. Segments $BR$ and $CS$ meet at $L$, and rays $LR$ and $LS$ intersect $\omega$ at $D$ and $E$, respectively. The internal angle bisector of $\angle BDE$ meets line $ER$ at $K$. Prove that if $BE = BR$, then $\angle ELK = \tfrac{1}{2} \angle BCD$.

by Evan Chen

Let $\omega_1$ and $\omega_2$ be two orthogonal circles, and let the center of $\omega_1$ be $O$. Diameter $AB$ of $\omega_1$ is selected so that $B$ lies strictly inside $\omega_2$. The two circles tangent to $\omega_2$, passing through $O$ and $A$, touch $\omega_2$ at $F$ and $G$. Prove that $FGOB$ is cyclic.

by Evan Chen

2013 ELMO Shortlist G6

Let $ABCDEF$ be a non-degenerate cyclic hexagon with no two opposite sides parallel, and define $X=AB\cap DE$, $Y=BC\cap EF$, and $Z=CD\cap FA$. Prove that

$\frac{XY}{XZ}=\frac{BE}{AD}\frac{\sin |\angle{B}-\angle{E}|}{\sin |\angle{A}-\angle{D}|}.$

Let $ABCDEF$ be a non-degenerate cyclic hexagon with no two opposite sides parallel, and define $X=AB\cap DE$, $Y=BC\cap EF$, and $Z=CD\cap FA$. Prove that

$\frac{XY}{XZ}=\frac{BE}{AD}\frac{\sin |\angle{B}-\angle{E}|}{\sin |\angle{A}-\angle{D}|}.$

by Victor Wang

2013 ELMO Shortlist G7

Let $ABC$ be a triangle inscribed in circle $\omega$, and let the medians from $B$ and $C$ intersect $\omega$ at $D$ and $E$ respectively. Let $O_1$ be the center of the circle through $D$ tangent to $AC$ at $C$, and let $O_2$ be the center of the circle through $E$ tangent to $AB$ at $B$. Prove that $O_1$, $O_2$, and the nine-point center of $ABC$ are collinear.

Let $ABC$ be a triangle inscribed in circle $\omega$, and let the medians from $B$ and $C$ intersect $\omega$ at $D$ and $E$ respectively. Let $O_1$ be the center of the circle through $D$ tangent to $AC$ at $C$, and let $O_2$ be the center of the circle through $E$ tangent to $AB$ at $B$. Prove that $O_1$, $O_2$, and the nine-point center of $ABC$ are collinear.

by Michael Kural

2013 ELMO Shortlist G8

Let $ABC$ be a triangle, and let $D$, $A$, $B$, $E$ be points on line $AB$, in that order, such that $AC=AD$ and $BE=BC$. Let $\omega_1, \omega_2$ be the circumcircles of $\triangle ABC$ and $\triangle CDE$, respectively, which meet at a point $F \neq C$. If the tangent to $\omega_2$ at $F$ cuts $\omega_1$ again at $G$, and the foot of the altitude from $G$ to $FC$ is $H$, prove that $\angle AGH=\angle BGH$.

Let $ABC$ be a triangle, and let $D$, $A$, $B$, $E$ be points on line $AB$, in that order, such that $AC=AD$ and $BE=BC$. Let $\omega_1, \omega_2$ be the circumcircles of $\triangle ABC$ and $\triangle CDE$, respectively, which meet at a point $F \neq C$. If the tangent to $\omega_2$ at $F$ cuts $\omega_1$ again at $G$, and the foot of the altitude from $G$ to $FC$ is $H$, prove that $\angle AGH=\angle BGH$.

by David Stoner

2013 ELMO Shortlist G9

Let $ABCD$ be a cyclic quadrilateral inscribed in circle $\omega$ whose diagonals meet at $F$. Lines $AB$ and $CD$ meet at $E$. Segment $EF$ intersects $\omega$ at $X$. Lines $BX$ and $CD$ meet at $M$, and lines $CX$ and $AB$ meet at $N$. Prove that $MN$ and $BC$ concur with the tangent to $\omega$ at $X$.

Let $ABCD$ be a cyclic quadrilateral inscribed in circle $\omega$ whose diagonals meet at $F$. Lines $AB$ and $CD$ meet at $E$. Segment $EF$ intersects $\omega$ at $X$. Lines $BX$ and $CD$ meet at $M$, and lines $CX$ and $AB$ meet at $N$. Prove that $MN$ and $BC$ concur with the tangent to $\omega$ at $X$.

by Allen Liu

2013 ELMO Shortlist G10

Let $AB=AC$ in $\triangle ABC$, and let $D$ be a point on segment $AB$. The tangent at $D$ to the circumcircle $\omega$ of $BCD$ hits $AC$ at $E$. The other tangent from $E$ to $\omega$ touches it at $F$, and $G=BF \cap CD$, $H=AG \cap BC$. Prove that $BH=2HC$.

Let $AB=AC$ in $\triangle ABC$, and let $D$ be a point on segment $AB$. The tangent at $D$ to the circumcircle $\omega$ of $BCD$ hits $AC$ at $E$. The other tangent from $E$ to $\omega$ touches it at $F$, and $G=BF \cap CD$, $H=AG \cap BC$. Prove that $BH=2HC$.

by David Stoner

2013 ELMO Shortlist G11

Let $\triangle ABC$ be a nondegenerate isosceles triangle with $AB=AC$, and let $D, E, F$ be the midpoints of $BC, CA, AB$ respectively. $BE$ intersects the circumcircle of $\triangle ABC$ again at $G$, and $H$ is the midpoint of minor arc $BC$. $CF\cap DG=I, BI\cap AC=J$. Prove that $\angle BJH=\angle ADG$ if and only if $\angle BID=\angle GBC$.

Let $\triangle ABC$ be a nondegenerate isosceles triangle with $AB=AC$, and let $D, E, F$ be the midpoints of $BC, CA, AB$ respectively. $BE$ intersects the circumcircle of $\triangle ABC$ again at $G$, and $H$ is the midpoint of minor arc $BC$. $CF\cap DG=I, BI\cap AC=J$. Prove that $\angle BJH=\angle ADG$ if and only if $\angle BID=\angle GBC$.

by David Stoner

Let $ABC$ be a nondegenerate acute triangle with circumcircle $\omega$ and let its incircle $\gamma$ touch $AB, AC, BC$ at $X, Y, Z$ respectively. Let $XY$ hit arcs $AB, AC$ of $\omega$ at $M, N$ respectively, and let $P \neq X, Q \neq Y$ be the points on $\gamma$ such that $MP=MX, NQ=NY$. If $I$ is the center of $\gamma$, prove that $P, I, Q$ are collinear if and only if $\angle BAC=90^\circ$.

by David Stoner

2013 ELMO Shortlist G13

In $\triangle ABC$, $AB<AC$. $D$ and $P$ are the feet of the internal and external angle bisectors of $\angle BAC$, respectively. $M$ is the midpoint of segment $BC$, and $\omega$ is the circumcircle of $\triangle APD$. Suppose $Q$ is on the minor arc $AD$ of $\omega$ such that $MQ$ is tangent to $\omega$. $QB$ meets $\omega$ again at $R$, and the line through $R$ perpendicular to $BC$ meets $PQ$ at $S$. Prove $SD$ is tangent to the circumcircle of $\triangle QDM$.

In $\triangle ABC$, $AB<AC$. $D$ and $P$ are the feet of the internal and external angle bisectors of $\angle BAC$, respectively. $M$ is the midpoint of segment $BC$, and $\omega$ is the circumcircle of $\triangle APD$. Suppose $Q$ is on the minor arc $AD$ of $\omega$ such that $MQ$ is tangent to $\omega$. $QB$ meets $\omega$ again at $R$, and the line through $R$ perpendicular to $BC$ meets $PQ$ at $S$. Prove $SD$ is tangent to the circumcircle of $\triangle QDM$.

by Ray Li

Let $O$ be a point (in the plane) and $T$ be an infinite set of points such that $|P_1P_2| \le 2012$ for every two distinct points $P_1,P_2\in T$. Let $S(T)$ be the set of points $Q$ in the plane satisfying $|QP| \le 2013$ for at least one point $P\in T$.

Now let $L$ be the set of lines containing exactly one point of $S(T)$. Call a line $\ell_0$ passing through $O$

Now let $L$ be the set of lines containing exactly one point of $S(T)$. Call a line $\ell_0$ passing through $O$

*bad*if there does not exist a line $\ell\in L$ parallel to (or coinciding with) $\ell_0$.
a) Prove that $L$ is nonempty.

b) Prove that one can assign a line $\ell(i)$ to each positive integer $i$ so that for every

b) Prove that one can assign a line $\ell(i)$ to each positive integer $i$ so that for every

*bad*line $\ell_0$ passing through $O$, there exists a positive integer $n$ with $\ell(n) = \ell_0$.
by David Yang

2014 ELMO Shortlist G1

Let $ABC$ be a triangle with symmedian point $K$. Select a point $A_1$ on line $BC$ such that the lines $AB$, $AC$, $A_1K$ and $BC$ are the sides of a cyclic quadrilateral. Define $B_1$ and $C_1$ similarly. Prove that $A_1$, $B_1$, and $C_1$ are collinear.

Let $ABC$ be a triangle with symmedian point $K$. Select a point $A_1$ on line $BC$ such that the lines $AB$, $AC$, $A_1K$ and $BC$ are the sides of a cyclic quadrilateral. Define $B_1$ and $C_1$ similarly. Prove that $A_1$, $B_1$, and $C_1$ are collinear.

by Sammy Luo

2014 ELMO Shortlist G2

$ABCD$ is a cyclic quadrilateral inscribed in the circle $\omega$. Let $AB \cap CD = E$, $AD \cap BC = F$. Let $\omega_1, \omega_2$ be the circumcircles of $AEF, CEF$, respectively. Let $\omega \cap \omega_1 = G$, $\omega \cap \omega_2 = H$. Show that $AC, BD, GH$ are concurrent.

$ABCD$ is a cyclic quadrilateral inscribed in the circle $\omega$. Let $AB \cap CD = E$, $AD \cap BC = F$. Let $\omega_1, \omega_2$ be the circumcircles of $AEF, CEF$, respectively. Let $\omega \cap \omega_1 = G$, $\omega \cap \omega_2 = H$. Show that $AC, BD, GH$ are concurrent.

by Yang Liu

2014 ELMO Shortlist G3

Let $A_1A_2A_3 \cdots A_{2013}$ be a cyclic $2013$-gon. Prove that for every point $P$ not the circumcenter of the $2013$-gon, there exists a point $Q\neq P$ such that $\frac{A_iP}{A_iQ}$ is constant for $i \in \{1, 2, 3, \cdots, 2013\}$.

Let $A_1A_2A_3 \cdots A_{2013}$ be a cyclic $2013$-gon. Prove that for every point $P$ not the circumcenter of the $2013$-gon, there exists a point $Q\neq P$ such that $\frac{A_iP}{A_iQ}$ is constant for $i \in \{1, 2, 3, \cdots, 2013\}$.

by Robin Park

2014 ELMO Shortlist G4
Let $ABCD$ be a quadrilateral inscribed in circle $\omega$. Define $E = AA \cap CD$, $F = AA \cap BC$, $G = BE \cap \omega$, $H = BE \cap AD$, $I = DF \cap \omega$, and $J = DF \cap AB$. Prove that $GI$, $HJ$, and the $B$-symmedian are concurrent.

by Robin Park

2014 ELMO Shortlist G5 problem 5

Let $P$ be a point in the interior of an acute triangle $ABC$, and let $Q$ be its isogonal conjugate. Denote by $\omega_P$ and $\omega_Q$ the circumcircles of triangles $BPC$ and $BQC$, respectively. Suppose the circle with diameter $\overline{AP}$ intersects $\omega_P$ again at $M$, and line $AM$ intersects $\omega_P$ again at $X$. Similarly, suppose the circle with diameter $\overline{AQ}$ intersects $\omega_Q$ again at $N$, and line $AN$ intersects $\omega_Q$ again at $Y$. Prove that lines $MN$ and $XY$ are parallel.

(Here, the points $P$ and $Q$ are

Let $P$ be a point in the interior of an acute triangle $ABC$, and let $Q$ be its isogonal conjugate. Denote by $\omega_P$ and $\omega_Q$ the circumcircles of triangles $BPC$ and $BQC$, respectively. Suppose the circle with diameter $\overline{AP}$ intersects $\omega_P$ again at $M$, and line $AM$ intersects $\omega_P$ again at $X$. Similarly, suppose the circle with diameter $\overline{AQ}$ intersects $\omega_Q$ again at $N$, and line $AN$ intersects $\omega_Q$ again at $Y$. Prove that lines $MN$ and $XY$ are parallel.

(Here, the points $P$ and $Q$ are

*isogonal conjugates*with respect to $\triangle ABC$ if the internal angle bisectors of $\angle BAC$, $\angle CBA$, and $\angle ACB$ also bisect the angles $\angle PAQ$, $\angle PBQ$, and $\angle PCQ$, respectively. For example, the orthocenter is the isogonal conjugate of the circumcenter.)
by Sammy Luo

2014 ELMO Shortlist G6

Let $ABCD$ be a cyclic quadrilateral with center $O$. Suppose the circumcircles of triangles $AOB$ and $COD$ meet again at $G$, while the circumcircles of triangles $AOD$ and $BOC$ meet again at $H$. Let $\omega_1$ denote the circle passing through $G$ as well as the feet of the perpendiculars from $G$ to $AB$ and $CD$. Define $\omega_2$ analogously as the circle passing through $H$ and the feet of the perpendiculars from $H$ to $BC$ and $DA$. Show that the midpoint of $GH$ lies on the radical axis of $\omega_1$ and $\omega_2$.

Let $ABCD$ be a cyclic quadrilateral with center $O$. Suppose the circumcircles of triangles $AOB$ and $COD$ meet again at $G$, while the circumcircles of triangles $AOD$ and $BOC$ meet again at $H$. Let $\omega_1$ denote the circle passing through $G$ as well as the feet of the perpendiculars from $G$ to $AB$ and $CD$. Define $\omega_2$ analogously as the circle passing through $H$ and the feet of the perpendiculars from $H$ to $BC$ and $DA$. Show that the midpoint of $GH$ lies on the radical axis of $\omega_1$ and $\omega_2$.

by Yang Liu

2014 ELMO Shortlist G7

Let $ABC$ be a triangle inscribed in circle $\omega$ with center $O$; let $\omega_A$ be its $A$-mixtilinear incircle, $\omega_B$ be its $B$-mixtilinear incircle, $\omega_C$ be its $C$-mixtilinear incircle, and $X$ be the radical center of $\omega_A, \omega_B, \omega_C$. Let $A'$, $B'$, $C'$ be the points at which $\omega_A$, $\omega_B$, $\omega_C$ are tangent to $\omega$. Prove that $AA'$, $BB'$, $CC'$ and $OX$ are concurrent.

Let $ABC$ be a triangle inscribed in circle $\omega$ with center $O$; let $\omega_A$ be its $A$-mixtilinear incircle, $\omega_B$ be its $B$-mixtilinear incircle, $\omega_C$ be its $C$-mixtilinear incircle, and $X$ be the radical center of $\omega_A, \omega_B, \omega_C$. Let $A'$, $B'$, $C'$ be the points at which $\omega_A$, $\omega_B$, $\omega_C$ are tangent to $\omega$. Prove that $AA'$, $BB'$, $CC'$ and $OX$ are concurrent.

by Robin Park

2014 ELMO Shortlist G8

In triangle $ABC$ with incenter $I$ and circumcenter $O$, let $A',B',C'$ be the points of tangency of its circumcircle with its $A,B,C$-mixtilinear circles, respectively. Let $\omega_A$ be the circle through $A'$ that is tangent to $AI$ at $I$, and define $\omega_B, \omega_C$ similarly. Prove that $\omega_A,\omega_B,\omega_C$ have a common point $X$ other than $I$, and that $\angle AXO = \angle OXA'$.

In triangle $ABC$ with incenter $I$ and circumcenter $O$, let $A',B',C'$ be the points of tangency of its circumcircle with its $A,B,C$-mixtilinear circles, respectively. Let $\omega_A$ be the circle through $A'$ that is tangent to $AI$ at $I$, and define $\omega_B, \omega_C$ similarly. Prove that $\omega_A,\omega_B,\omega_C$ have a common point $X$ other than $I$, and that $\angle AXO = \angle OXA'$.

by Sammy Luo

2014 ELMO Shortlist G9

Let $P$ be a point inside a triangle $ABC$ such that $\angle PAC= \angle PCB$. Let the projections of $P$ onto $BC$, $CA$, and $AB$ be $X,Y,Z$ respectively. Let $O$ be the circumcenter of $\triangle XYZ$, $H$ be the foot of the altitude from $B$ to $AC$, $N$ be the midpoint of $AC$, and $T$ be the point such that $TYPO$ is a parallelogram. Show that $\triangle THN$ is similar to $\triangle PBC$.

Let $P$ be a point inside a triangle $ABC$ such that $\angle PAC= \angle PCB$. Let the projections of $P$ onto $BC$, $CA$, and $AB$ be $X,Y,Z$ respectively. Let $O$ be the circumcenter of $\triangle XYZ$, $H$ be the foot of the altitude from $B$ to $AC$, $N$ be the midpoint of $AC$, and $T$ be the point such that $TYPO$ is a parallelogram. Show that $\triangle THN$ is similar to $\triangle PBC$.

by Sammy Luo

2014 ELMO Shortlist G10

We are given triangles $ABC$ and $DEF$ such that $D\in BC, E\in CA, F\in AB$, $AD\perp EF, BE\perp FD, CF\perp DE$. Let the circumcenter of $DEF$ be $O$, and let the circumcircle of $DEF$ intersect $BC,CA,AB$ again at $R,S,T$ respectively. Prove that the perpendiculars to $BC,CA,AB$ through $D,E,F$ respectively intersect at a point $X$, and the lines $AR,BS,CT$ intersect at a point $Y$, such that $O,X,Y$ are collinear.

We are given triangles $ABC$ and $DEF$ such that $D\in BC, E\in CA, F\in AB$, $AD\perp EF, BE\perp FD, CF\perp DE$. Let the circumcenter of $DEF$ be $O$, and let the circumcircle of $DEF$ intersect $BC,CA,AB$ again at $R,S,T$ respectively. Prove that the perpendiculars to $BC,CA,AB$ through $D,E,F$ respectively intersect at a point $X$, and the lines $AR,BS,CT$ intersect at a point $Y$, such that $O,X,Y$ are collinear.

by Sammy Luo

2014 ELMO Shortlist G11

Let $ABC$ be a triangle with circumcenter $O$. Let $P$ be a point inside $ABC$, so let the points $D, E, F$ be on $BC, AC, AB$ respectively so that the Miquel point of $DEF$ with respect to $ABC$ is $P$. Let the reflections of $D, E, F$ over the midpoints of the sides that they lie on be $R, S, T$. Let the Miquel point of $RST$ with respect to the triangle $ABC$ be $Q$. Show that $OP = OQ$.

Let $ABC$ be a triangle with circumcenter $O$. Let $P$ be a point inside $ABC$, so let the points $D, E, F$ be on $BC, AC, AB$ respectively so that the Miquel point of $DEF$ with respect to $ABC$ is $P$. Let the reflections of $D, E, F$ over the midpoints of the sides that they lie on be $R, S, T$. Let the Miquel point of $RST$ with respect to the triangle $ABC$ be $Q$. Show that $OP = OQ$.

by Yang Liu

2014 ELMO Shortlist G12

Let $AB=AC$ in $\triangle ABC$, and let $D$ be a point on segment $AB$. The tangent at $D$ to the circumcircle $\omega$ of $BCD$ hits $AC$ at $E$. The other tangent from $E$ to $\omega$ touches it at $F$, and $G=BF \cap CD$, $H=AG \cap BC$. Prove that $BH=2HC$.

Let $AB=AC$ in $\triangle ABC$, and let $D$ be a point on segment $AB$. The tangent at $D$ to the circumcircle $\omega$ of $BCD$ hits $AC$ at $E$. The other tangent from $E$ to $\omega$ touches it at $F$, and $G=BF \cap CD$, $H=AG \cap BC$. Prove that $BH=2HC$.

by David Stoner

2014 ELMO Shortlist G13

Let $ABC$ be a nondegenerate acute triangle with circumcircle $\omega$ and let its incircle $\gamma$ touch $AB, AC, BC$ at $X, Y, Z$ respectively. Let $XY$ hit arcs $AB, AC$ of $\omega$ at $M, N$ respectively, and let $P \neq X, Q \neq Y$ be the points on $\gamma$ such that $MP=MX, NQ=NY$. If $I$ is the center of $\gamma$, prove that $P, I, Q$ are collinear if and only if $\angle BAC=90^\circ$.

Let $ABC$ be a nondegenerate acute triangle with circumcircle $\omega$ and let its incircle $\gamma$ touch $AB, AC, BC$ at $X, Y, Z$ respectively. Let $XY$ hit arcs $AB, AC$ of $\omega$ at $M, N$ respectively, and let $P \neq X, Q \neq Y$ be the points on $\gamma$ such that $MP=MX, NQ=NY$. If $I$ is the center of $\gamma$, prove that $P, I, Q$ are collinear if and only if $\angle BAC=90^\circ$.

by David Stoner

Let $\omega$ be a circle and $C$ a point outside it; distinct points $A$ and $B$ are selected on $\omega$ so that $\overline{CA}$ and $\overline{CB}$ are tangent to $\omega$. Let $X$ be the reflection of $A$ across the point $B$, and denote by $\gamma$ the circumcircle of triangle $BXC$. Suppose $\gamma$ and $\omega$ meet at $D \neq B$ and line $CD$ intersects $\omega$ at $E \neq D$. Prove that line $EX$ is tangent to the circle $\gamma$.

by David Stoner

2016 ELMO problem 2Oscar is drawing diagrams with trash can lids and sticks. He draws a triangle $ABC$ and a point $D$ such that $DB$ and $DC$ are tangent to the circumcircle of $ABC$. Let $B'$ be the reflection of $B$ over $AC$ and $C'$ be the reflection of $C$ over $AB$. If $O$ is the circumcenter of $DB'C'$, help Oscar prove that $AO$ is perpendicular to $BC$.

by James Lin

Elmo is now learning olympiad geometry. In triangle $ABC$ with $AB\neq AC$, let its incircle be tangent to sides $BC$, $CA$, and $AB$ at $D$, $E$, and $F$, respectively. The internal angle bisector of $\angle BAC$ intersects lines $DE$ and $DF$ at $X$ and $Y$, respectively. Let $S$ and $T$ be distinct points on side $BC$ such that $\angle XSY=\angle XTY=90^\circ$. Finally, let $\gamma$ be the circumcircle of $\triangle AST$.

a) Help Elmo show that $\gamma$ is tangent to the circumcircle of $\triangle ABC$.

b) Help Elmo show that $\gamma$ is tangent to the incircle of $\triangle ABC$.

Let $ABC$ be a triangle with orthocenter $H,$ and let $M$ be the midpoint of $\overline{BC}.$ Suppose that $P$ and $Q$ are distinct points on the circle with diameter $\overline{AH},$ different from $A,$ such that $M$ lies on line $PQ.$ Prove that the orthocenter of $\triangle APQ$ lies on the circumcircle of $\triangle ABC.$

a) Help Elmo show that $\gamma$ is tangent to the circumcircle of $\triangle ABC$.

b) Help Elmo show that $\gamma$ is tangent to the incircle of $\triangle ABC$.

by James Lin

2017 ELMO Shortlist G1 problem 2Let $ABC$ be a triangle with orthocenter $H,$ and let $M$ be the midpoint of $\overline{BC}.$ Suppose that $P$ and $Q$ are distinct points on the circle with diameter $\overline{AH},$ different from $A,$ such that $M$ lies on line $PQ.$ Prove that the orthocenter of $\triangle APQ$ lies on the circumcircle of $\triangle ABC.$

by Michael Ren

Let $ABC$ be a scalene triangle with $\angle A = 60^{\circ}$. Let $E$ and $F$ be the feet of the angle bisectors of $\angle ABC$ and $\angle ACB$, respectively, and let $I$ be the incenter of $\triangle ABC$. Let $P,Q$ be distinct points such that $\triangle PEF$ and $\triangle QEF$ are equilateral. If $O$ is the circumcenter of of $\triangle APQ$, show that $\overline{OI}\perp \overline{BC}$.

by Vincent Huang

2017 ELMO Shortlist G3

Call the ordered pair of distinct circles $(\omega, \gamma)$ scribable if there exists a triangle with circumcircle $\omega$ and incircle $\gamma$. Prove that among $n$ distinct circles there are at most $(n/2)^2$ scribable pairs.

Call the ordered pair of distinct circles $(\omega, \gamma)$ scribable if there exists a triangle with circumcircle $\omega$ and incircle $\gamma$. Prove that among $n$ distinct circles there are at most $(n/2)^2$ scribable pairs.

by Daniel Liu

Let $ABC$ be an acute triangle with incenter $I$ and circumcircle $\omega$. Suppose a circle $\omega_B$ is tangent to $BA,BC$, and internally tangent to $\omega$ at $B_1$, while a circle $\omega_C$ is tangent to $CA, CB$, and internally tangent to $\omega$ at $C_1$. If $B_2, C_2$ are the points opposite to $B,C$ on $\omega$, respectively, and $X$ denotes the intersection of $B_1C_2, B_2C_1$, prove that $XA=XI$.

by Vincent Huang & Nathan Weckwerth

2018 ELMO Shortlist G1

Let $ABC$ be an acute triangle with orthocenter $H$, and let $P$ be a point on the nine-point circle of $ABC$. Lines $BH, CH$ meet the opposite sides $AC, AB$ at $E, F$, respectively. Suppose that the circumcircles $(EHP), (FHP)$ intersect lines $CH, BH$ a second time at $Q,R$, respectively. Show that as $P$ varies along the nine-point circle of $ABC$, the line $QR$ passes through a fixed point.

by Brandon Wang

2018 ELMO Shortlist G2 problem 4
Let $ABC$ be a scalene triangle with orthocenter $H$ and circumcenter $O$. Let $P$ be the midpoint of $\overline{AH}$ and let $T$ be on line $BC$ with $\angle TAO=90^{\circ}$. Let $X$ be the foot of the altitude from $O$ onto line $PT$. Prove that the midpoint of $\overline{PX}$ lies on the nine-point circle* of $\triangle ABC$.

*The nine-point circle of $\triangle ABC$ is the unique circle passing through the following nine points: the midpoint of the sides, the feet of the altitudes, and the midpoints of $\overline{AH}$, $\overline{BH}$, and $\overline{CH}$.

*The nine-point circle of $\triangle ABC$ is the unique circle passing through the following nine points: the midpoint of the sides, the feet of the altitudes, and the midpoints of $\overline{AH}$, $\overline{BH}$, and $\overline{CH}$.

by Zack Chroman

Let $A$ be a point in the plane, and $\ell$ a line not passing through $A$. Evan does not have a straightedge, but instead has a special compass which has the ability to draw a circle through three distinct noncollinear points. (The center of the circle is

i) Can Evan construct* the reflection of $A$ over $\ell$?

ii) Can Evan construct the foot of the altitude from $A$ to $\ell$?

*To construct a point, Evan must have an algorithm which marks the point in finitely many steps.

*not*marked in this process.) Additionally, Evan can mark the intersections between two objects drawn, and can mark an arbitrary point on a given object or on the plane.i) Can Evan construct* the reflection of $A$ over $\ell$?

ii) Can Evan construct the foot of the altitude from $A$ to $\ell$?

*To construct a point, Evan must have an algorithm which marks the point in finitely many steps.

by Zack Chroman

2018 ELMO Shortlist G4

Let $ABCDEF$ be a hexagon inscribed in a circle $\Omega$ such that triangles $ACE$ and $BDF$ have the same orthocenter. Suppose that segments $BD$ and $DF$ intersect $CE$ at $X$ and $Y$, respectively. Show that there is a point common to $\Omega$, the circumcircle of $DXY$, and the line through $A$ perpendicular to $CE$.

Let $ABCDEF$ be a hexagon inscribed in a circle $\Omega$ such that triangles $ACE$ and $BDF$ have the same orthocenter. Suppose that segments $BD$ and $DF$ intersect $CE$ at $X$ and $Y$, respectively. Show that there is a point common to $\Omega$, the circumcircle of $DXY$, and the line through $A$ perpendicular to $CE$.

by Michael Ren & Vincent Huang

Let scalene triangle $ABC$ have altitudes $AD, BE, CF$ and circumcenter $O$. The circumcircles of $\triangle ABC$ and $\triangle ADO$ meet at $P \ne A$. The circumcircle of $\triangle ABC$ meets lines $PE$ at $X \ne P$ and $PF$ at $Y \ne P$. Prove that $XY \parallel BC$.

by Daniel Hu

Let $ABC$ be an acute triangle with orthocenter $H$ and circumcircle $\Gamma$. Let $BH$ intersect $AC$ at $E$, and let $CH$ intersect $AB$ at $F$. Let $AH$ intersect $\Gamma$ again at $P \neq A$. Let $PE$ intersect $\Gamma$ again at $Q \neq P$. Prove that $BQ$ bisects segment $\overline{EF}$.

by Luke Robitaille

2019 ELMO Shortlist G2 problem 4Carl is given three distinct non-parallel lines $\ell_1, \ell_2, \ell_3$ and a circle $\omega$ in the plane. In addition to a normal straightedge, Carl has a special straightedge which, given a line $\ell$ and a point $P$, constructs a new line passing through $P$ parallel to $\ell$. (Carl does not have a compass.) Show that Carl can construct a triangle with circumcircle $\omega$ whose sides are parallel to $\ell_1,\ell_2,\ell_3$ in some order.

by Vincent Huang

2019 ELMO Shortlist G3Let $\triangle ABC$ be an acute triangle with incenter $I$ and circumcenter $O$. The incircle touches sides $BC,CA,$ and $AB$ at $D,E,$ and $F$ respectively, and $A'$ is the reflection of $A$ over $O$. The circumcircles of $ABC$ and $A'EF$ meet at $G$, and the circumcircles of $AMG$ and $A'EF$ meet at a point $H\neq G$, where $M$ is the midpoint of $EF$. Prove that if $GH$ and $EF$ meet at $T$, then $DT\perp EF$.

by Ankit Bisain

2019 ELMO Shortlist G4Let triangle $ABC$ have altitudes $BE$ and $CF$ which meet at $H$. The reflection of $A$ over $BC$ is $A'$. Let $(ABC)$ meet $(AA'E)$ at $P$ and $(AA'F)$ at $Q$. Let $BC$ meet $PQ$ at $R$. Prove that $EF \parallel HR$.

by Daniel Hu

Given a triangle $ABC$ for which $\angle BAC \neq 90^{\circ}$, let $B_1, C_1$ be variable points on $AB,AC$, respectively. Let $B_2,C_2$ be the points on line $BC$ such that a spiral similarity centered at $A$ maps $B_1C_1$ to $C_2B_2$. Denote the circumcircle of $AB_1C_1$ by $\omega$. Show that if $B_1B_2$ and $C_1C_2$ concur on $\omega$ at a point distinct from $B_1$ and $C_1$, then $\omega$ passes through a fixed point other than $A$.
by Max Jiang

2019 ELMO Shortlist G6Let $ABC$ be an acute scalene triangle and let $P$ be a point in the plane. For any point $Q\neq A,B,C$, define $T_A$ to be the unique point such that $\triangle T_ABP \sim \triangle T_AQC$ and $\triangle T_ABP, \triangle T_AQC$ are oriented in the same direction (clockwise or counterclockwise). Similarly define $T_B, T_C$.

a) Find all $P$ such that there exists a point $Q$ with $T_A,T_B,T_C$ all lying on the circumcircle of $\triangle ABC$. Call such a pair $(P,Q)$ a tasty pair with respect to $\triangle ABC$.

b) Keeping the notations from a), determine if there exists a tasty pair which is also tasty with respect to $\triangle T_AT_BT_C$.

by Vincent Huang

source: web.evanchen.cc/

## Δεν υπάρχουν σχόλια:

## Δημοσίευση σχολίου