drop down menu

New Zealand 2010-22 (NZOMC, NZMO) 39p

geometry problems from New Zealand Mathematical Olympiad Camp Selection Problems with aops links

collected inside aops here


NZMOC 2010-18


$AB$ is a chord of length $6$ in a circle of radius $5$ and centre $O$. A square is inscribed in the sector $OAB$ with two vertices on the circumference and two sides parallel to$ AB$. Find the area of the square.

The diagonals of quadrilateral $ABCD$ intersect in point $E$. Given that $|AB| =|CE|$, $|BE| = |AD|$, and $\angle AED = \angle BAD$, determine the ratio $|BC|:|AD|$.

In a convex pentagon $ABCDE$ the areas of the triangles $ABC, ABD, ACD$ and $ADE$ are all equal to the same value x. What is the area of the triangle $BCE$?

A line drawn from the vertex $A$ of the equilateral triangle $ABC$ meets the side $BC$ at $D$ and the circumcircle of the triangle at point $Q$. Prove that $\frac{1}{QD} = \frac{1}{QB} + \frac{1}{QC}$.

Let an acute angled triangle $ABC$ be given. Prove that the circles whose diameters are $AB$ and $AC$ have a point of intersection on $BC$.

Let a square $ABCD$ with sides of length $1$ be given. A point $X$ on $BC$ is at distance $d$ from $C$, and a point $Y$ on $CD$ is at distance $d$ from $C$. The extensions of: $AB$ and $DX$ meet at $P$, $AD$ and $BY$ meet at $Q, AX$ and $DC$ meet at $R$, and $AY$ and $BC$ meet at $S$. If points $P, Q, R$ and $S$ are collinear, determine $d$.

In triangle $ABC$, the altitude from $B$ is tangent to the circumcircle of $ABC$. Prove that the largest angle of the triangle is between $90^o$ and $135^o$. If the altitudes from both $B$ and from $C$ are tangent to the circumcircle, then what are the angles of the triangle?
Let a point $P$ inside a parallelogram $ABCD$ be given such that $\angle APB +\angle CPD = 180^o$. Prove that $AB \cdot AD = BP \cdot DP + AP \cdot CP$.

From a square of side length $1$, four identical triangles are removed, one at each corner, leaving a regular octagon. What is the area of the octagon?

Let $ABCD$ be a quadrilateral in which every angle is smaller than $180^o$. If the bisectors of angles $\angle DAB$ and $\angle DCB$ are parallel, prove that $\angle ADC = \angle ABC$

Let $ABCD$ be a trapezoid, with $AB \parallel CD$ (the vertices are listed in cyclic order). The diagonals of this trapezoid are perpendicular to one another and intersect at $O$. The base angles $\angle DAB$ and $\angle CBA$ are both acute. A point $M$ on the line sgement $OA$ is such that $\angle BMD = 90^o$, and a point $N$ on the line segment $OB$ is such that $\angle ANC = 90^o$. Prove that triangles $OMN$ and $OBA$ are similar.

Let $C$ be a cube. By connecting the centres of the faces of $C$ with lines we form an octahedron $O$. By connecting the centers of each face of $O$ with lines we get a smaller cube $C'$. What is the ratio between the side length of $C$ and the side length of $C'$?

$ABCD$ is a quadrilateral having both an inscribed circle (one tangent to all four sides) with center $I,$ and a circumscribed circle with center $O$. Let $S$ be the point of intersection of the diagonals of $ABCD$. Show that if any two of $S, I$ and $O$ coincide, then $ABCD$ is a square (and hence all three coincide).

Let $ABC$ be a triangle with $\angle CAB > 45^o$ and $\angle CBA > 45^o$. Construct an isosceles right angled triangle $RAB$ with $AB$ as its hypotenuse and $R$ inside $ABC$. Also construct isosceles right angled triangles $ACQ$ and $BCP$ having $AC$ and $BC$ respectively as their hypotenuses and lying entirely outside $ABC$. Show that $CQRP$ is a parallelogram.

Let $ABC$ be a triangle in which the length of side $AB$ is $4$ units, and that of $BC$ is $2$ units. Let $D$ be the point on $AB$ at distance $3$ units from $A$. Prove that the line perpendicular to $AB$ through $D$, the angle bisector of $\angle ABC$, and the perpendicular bisector of $BC$ all meet at a single point.

Let $ABC$ be an acute angled triangle. Let the altitude from $C$ to $AB$ meet $AB$ at $C'$ and have midpoint $M$, and let the altitude from $B$ to $AC$ meet $AC$ at $B'$ and have midpoint $N$. Let $P$ be the point of intersection of $AM$ and $BB'$ and $Q$ the point of intersection of $AN$ and $CC'$. Prove that the point $M, N, P$ and $Q$ lie on a circle.

Let $AB$ be a line segment with midpoint $I$. A circle, centred at $I$ has diameter less than the length of the segment. A triangle $ABC$ is tangent to the circle on sides $AC$ and $BC$. On $AC$ a point $X$ is given, and on $BC$ a point $Y$ is given such that $XY$ is also tangent to the circle (in particular $X$ lies between the point of tangency of the circle with $AC$ and $C$, and similarly $Y$ lies between the point of tangency of the circle with $BC$ and $C$. Prove that $AX \cdot BY = AI \cdot BI$.

Let $ABC$ be an acute angled triangle. The arc between $A$ and $B$ of the circumcircle of $ABC$ is reflected through the line $AB$, and the arc between $A$ and $C$ of the circumcircle of $ABC$ is reflected over the line $AC$. Obviously these two reflected arcs intersect at the point $A$. Prove that they also intersect at another point inside the triangle $ABC$.

Let $ABC$ be an acute-angled scalene triangle. Let $P$ be a point on the extension of $AB$ past $B$, and $Q$ a point on the extension of $AC$ past $C$ such that $BPQC$ is a cyclic quadrilateral. Let $N$ be the foot of the perpendicular from A to $BC$. If $NP = NQ$ then prove that $N$ is also the centre of the circumcircle of $APQ$.

Consider an equilateral triangle $ABC$. Let $P$ be an arbitrary point on the shorter arc $AC$ of the circumcircle of $ABC$. Show that $PB = PA + PC$.

Altitudes $AD$ and $BE$ of an acute triangle $ABC$ intersect at $H$. Let $P \ne E$ be the point of tangency of the circle with radius $HE$ centred at $H$ with its tangent line going through point $C$, and let $Q \ne E$ be the point of tangency of the circle with radius $BE$ centred at $B$ with its tangent line going through $C$. Prove that the points $D, P$ and $Q$ are collinear.

Let $ABCD$ be a parallelogram with an acute angle at $A$. Let $G$ be the point on the line $AB$, distinct from $B$, such that $CG = CB$. Let H be the point on the line $BC$, distinct from $B$, such that $AB = AH$. Prove that triangle $DGH$ is isosceles.

Let $ABCD$ be a quadrilateral. The circumcircle of the triangle $ABC$ intersects the sides $CD$ and $DA$ in the points $P$ and $Q$ respectively, while the circumcircle of $CDA$ intersects the sides $AB$ and $BC$ in the points $R$ and $S$. The lines $BP$ and $BQ$ intersect the line $RS$ in the points $M$ and $N$ respectively. Prove that the points $M, N, P$ and $Q$ lie on the same circle.

Let $P$ be a point inside triangle $ABC$ such that $\angle CPA = 90^o$ and $\angle CBP = \angle CAP$. Prove that $\angle P XY = 90^o$, where $X$ and $Y$ are the midpoints of $AB$ and $AC$ respectively.

The intersection of a cube and a plane is a pentagon. Prove the length of at least oneside of the pentagon differs from 1 metre by at least 20 centimetres.

Let $\lambda$ be a line and let $M, N$ be two points on $\lambda$. Circles $\alpha$ and $\beta$ centred at $A$ and $B$ respectively are both tangent to $\lambda$ at $M$, with $A$ and $B$ being on opposite sides of $\lambda$. Circles $\gamma$ and $\delta$ centred at $C$ and $D$ respectively are both tangent to $\lambda$ at $N$, with $C$ and $D$ being on opposite sides of $\lambda$. Moreover $A$ and $C$ are on the same side of $\lambda$. Prove that if there exists a circle tangent to all circles $\alpha, \beta, \gamma, \delta$ containing all of them in its interior, then the lines $AC, BD$ and $\lambda$ are either concurrent or parallel.

NZMO 2019-22


In triangle $ABC$, points $D$ and $E$ lie on the interior of segments $AB$ and $AC$, respectively,such that $AD = 1$, $DB = 2$, $BC = 4$, $CE = 2$ and $EA = 3$. Let $DE$ intersect $BC$ at $F$. Determine the length of $CF$.

Let $ABCDEF$ be a convex hexagon containing a point $P$ in its interior such that $PABC$ and $PDEF$ are congruent rectangles with $PA = BC = P D = EF$ (and $AB = PC = DE = PF$). Let $\ell$ be the line through the midpoint of $AF$ and the circumcentre of $PCD$. Prove that $\ell$ passes through $P$.

Let $X$ be the intersection of the diagonals $AC$ and $BD$ of convex quadrilateral $ABCD$. Let $P$ be the intersection of lines $AB$ and $CD$, and let $Q$ be the intersection of lines $PX$ and $AD$. Suppose that $\angle ABX = \angle XCD = 90^o$. Prove that $QP$ is the angle bisector of $\angle BQC$.

Let $ABCD$ be a square and let $X$ be any point on side $BC$ between $B$ and $C$. Let $Y$ be the point on line $CD$ such that $BX = YD$ and $D$ is between $C$ and $Y$ . Prove that the midpoint of $XY$ lies on diagonal $BD$.

Let $\vartriangle ABC$ be an acute triangle with $AB > AC$. Let $P$ be the foot of the altitude from $C$ to $AB$ and let $Q$ be the foot of the altitude from $B$ to $AC$. Let $X$ be the intersection of $PQ$ and $BC$. Let the intersection of the circumcircles of triangle $\vartriangle  AXC$ and triangle $\vartriangle  PQC$ be distinct points: $C$ and $Y$ . Prove that $PY$ bisects $AX$.

Let $\Gamma_1$ and $\Gamma_2$ be circles internally tangent at point $A$, with $\Gamma_1$ inside $\Gamma_2$. Let $BC$ be a chord of $\Gamma_2$ which is tangent to $\Gamma_1$ at point $D$. Prove that line $AD$ is the angle bisector of $\angle BAC$

Let $ABCD$ be a trapezium such that $AB\parallel CD$. Let $E$ be the intersection of diagonals $AC$ and $BD$. Suppose that $AB = BE$ and $AC = DE$. Prove that the internal angle bisector of $\angle BAC$ is perpendicular to $AD$.

Let $ABC$ be an isosceles triangle with $AB = AC$. Point $D$ lies on side $AC$ such that $BD$ is the angle bisector of $\angle ABC$. Point $E$ lies on side $BC$ between $B$ and $C$ such that $BE = CD$. Prove that $DE$ is parallel to $AB$.

Let $ABCD$ be a convex quadrilateral such that $AB + BC = 2021$ and $AD = CD$. We are also given that $\angle ABC = \angle  CDA = 90^o$. Determine the length of the diagonal $BD$.

Let $AB$ be a chord of circle $\Gamma$. Let $O$ be the centre of a circle which is tangent to $AB$ at $C$ and internally tangent to $\Gamma$ at $P$. Point $C$ lies between $A$ and $B$. Let the circumcircle of triangle $POC$ intersect $\Gamma$ at distinct points $P$ and $Q$. Prove that $\angle{AQP}=\angle{CQB}$.

$ABCD$ is a rectangle with side lengths $AB = CD = 1$ and $BC = DA = 2$. Let $ M$ be the midpoint of $AD$. Point $P$ lies on the opposite side of line $MB$ to $A$, such that triangle $MBP$ is equilateral. Find the value of $\angle PCB$.

Let $M$ be the midpoint of side $BC$ of acute triangle $ABC$. The circle centered at $M$ passing through $A$ intersects the lines $AB$ and $AC$ again at $P$ and $Q$, respectively. The tangents to this circle at $P$ and $Q$ meet at $D$. Prove that the perpendicular bisector of $BC$ bisects segment $AD$.

Triangle $ABC$ is right-angled at $B$ and has incentre $I$. Points $D$, $E$ and $F$ are the points where the incircle of the triangle touches the sides $BC$, $AC$ and AB respectively. Lines $CI$ and $EF$ intersect at point $P$. Lines $DP$ and $AB$ intersect at point $Q$. Prove that $AQ = BF$.

No comments:

Post a Comment