drop down menu

Macedonia North 2006-21 20p

geometry problems from North Macedonian National Mathematical Olympiads
with aops links in the names

2006 - 2021 


2006 North Macedonia p4
Let $M$ be a point on the smaller arc $A_1A_n$ of the circumcircle of a regular $n$-gon $A_1A_2\ldots A_n$ .
(a) If $n$ is even, prove that $\sum_{i=1}^n(-1)^iMA_i^2=0$.
(b) If $n$ is odd, prove that $\sum_{i=1}^n(-1)^iMA_i=0$.

2007 North Macedonia p3
In a trapezoid $ABCD$ with a base $AD$, point $L$ is the orthogonal projection of $C$ on $AB$, and $K$ is the point on $BC$ such that $AK$ is perpendicular to $AD$. Let $O$ be the circumcenter of triangle $ACD$. Suppose that the lines $AK , CL$ and $DO$ have a common point. Prove that $ABCD$ is a parallelogram.

2008 North Macedonia p4
An acute triangle $ ABC$ with $ AB \neq AC$ is given. Let $ V$ and $ D$ be the feet of the altitude and angle bisector from $ A$, and let $ E$ and $ F$ be the intersection points of the circumcircle of $ \triangle AVD$ with sides $ AC$ and $ AB$, respectively. Prove that $ AD$, $ BE$ and $ CF$ have a common point.

2009 North Macedonia p2
Let $O$ be the centre of the incircle of $\triangle ABC$. Points $K,L$ are the intersection points of the circles circumscribed about triangles $BOC,AOC$ respectively with the bisectors of the angles at $A,B$ respectively $(K,L\not= O)$. Also $P$ is the midpoint of segment $KL$, $M$ is the reflection of $O$ with respect to $P$ and $N$ is the reflection of $O$ with respect to line $KL$. Prove that the points $K,L,M$ and $N$ lie on the same circle.

2010 North Macedonia p4
The point $O$ is the centre of the circumscribed circle of the acute-angled triangle $ABC$. The line $AO$ cuts the side $BC$ in point $N$, and the line $BO$ cuts the side $AC$ at point $M$. Prove that if $CM=CN$, then $AC=BC$.

2011 North Macedonia p2
Acute-angled $~$ $\triangle{ABC}$ $~$ is given. A line $~$ $l$ $~$ parallel to side $~$ $AB$ $~$ passing through vertex $~$ $C$ $~$ is drawn. Let the angle bisectors of $~$ $\angle{BAC}$ $~$ and $~$ $\angle{ABC}$ $~$ intersect the sides $~$ $BC$ and $~$ $AC$ at points $~$ $D$ $~$ and $~$ $F$, and line $~$ $l$ $~$ at points $~$ $E$ $~$ and $~$ $G$ $~$ respectively. Prove that if $~$ $\overline{DE}=\overline{GF}$ $~$ then $~$ $\overline{AC}=\overline{BC}\, .$

2012 North Macedonia p4
A fixed circle $k$ and collinear points $E,F$ and $G$ are given such that the points $E$ and $G$ lie outside the circle $k$ and $F$ lies inside the circle $k$. Prove that, if $ABCD$ is an arbitrary quadrilateral inscribed in the circle $k$ such that the points $E,F$ and $G$ lie on lines $AB,AD$ and $DC$ respectively, then the side $BC$ passes through a fixed point collinear with $E,F$ and $G$, independent of the quadrilateral $ABCD$.

2013 North Macedonia p3
Acute angle triangle is given such that $ BC $ is the longest side. Let $ E $ and $ G $ be the intersection points from the altitude from $ A $ to $ BC $ with the circumscribed circle of triangle $ ABC $ and $ BC $ respectively. Let the center $ O $ of this circle is positioned on the perpendicular line from $ A $ to $ BE $. Let $ EM $ be perpendicular to $ AC $ and $ EF $ be perpendicular to $ AB $. Prove that the area of $ FBEG $ is greater than the area of $ MFE.

2013 North Macedonia p5
An arbitrary triangle ABC is given. There are 2 lines, p and q, that are not parallel to each other and they are not perpendicular to the sides of the triangle. The perpendicular lines through points A, B and C to line p we denote with $ p_a, p_b, p_c $ and the perpendicular lines to line q we denote with $ q_a, q_b, q_c $. Let the intersection points of the lines $ p_a, q_a, p_b, q_b, p_c $ and $ q_c $ with $ q_b, p_b, q_c, p_c, q_a $ and $ p_a $ are $ K, L, P, Q, N $ and $ M $. Prove that $ KL, MN $ and $ PQ $ intersect in one point.

2014 North Macedonia p3
Let $k_1, k_2$ and $k_3$ be three circles with centers $O_1, O_2$ and $O_3$ respectively, such that no center is inside of the other two circles. Circles $k_1$ and $k_2$ intersect at $A$ and $P$, circles $k_1$ and $k_3$ intersect and $C$ and $P$, circles $k_2$ and $k_3$ intersect at $B$ and $P$. Let $X$ be a point on $k_1$ such that the line $XA$ intersects $k_2$ at $Y$ and the line $XC$ intersects $k_3$ at $Z$, such that $Y$ is nor inside $k_1$ nor inside $k_3$ and $Z$ is nor inside $k_1$ nor inside $k_2$.
a) Prove that $\triangle XYZ$ is simular to $\triangle O_1O_2O_3$
b) Prove that the $P_{\triangle XYZ} \le 4P_{\triangle O_1O_2O_3}$. Is it possible to reach equation?$

Note: $P$ denotes the area of a triangle.

2015 North Macedonia p1
Let $AH_A, BH_B$ and $CH_C$ be altitudes in $\triangle ABC$. Let $p_A,p_B,p_C$ be the perpendicular lines from vertices $A,B,C$ to $H_BH_C, H_CH_A, H_AH_B$ respectively. Prove that $p_A,p_B,p_C$ are concurrent lines.

2015 North Macedonia p4
Let $k_1$ and $k_2$ be two circles and let them cut each other at points $A$ and $B$. A line through $B$ is cutting $k_1$ and $k_2$ in $C$ and $D$ respectively, such that $C$ doesn't lie inside of $k_2$ and $D$ doesn't lie inside of $k_1$. Let $M$ be the intersection point of the tangent lines to $k_1$ and $k_2$ that are passing through $C$ and $D$, respectively. Let $P$ be the intersection of the lines $AM$ and $CD$. The tangent line to $k_1$ passing through $B$ intersects $AD$ in point $L$. The tangent line to $k_2$ passing through $B$ intersects $AC$ in point $K$. Let $KP \cap MD \equiv N$ and $LP \cap MC \equiv Q$. Prove that $MNPQ$ is a parallelogram.

2016 North Macedonia p4
A segment $AB$ is given and it's midpoint $K$. On the perpendicular line to $AB$, passing through $K$ a point $C$, different from $K$ is chosen. Let $N$ be the intersection of $AC$ and the line passing through $B$ and the midpoint of $CK$. Let $U$ be the intersection point of $AB$ and the line passing through $C$ and $L$, the midpoint of $BN$. Prove that the ratio of the areas of the triangles $CNL$ and $BUL$, is independent of the choice of the point $C$.

2017 North Macedonia p4
Let $O$ be the circumcenter of the acute triangle $ABC$ ($AB < AC$). Let $A_1$ and $P$ be the feet of the perpendicular lines drawn from $A$ and $O$ to $BC$, respectively. The lines $BO$ and $CO$ intersect $AA_1$ in $D$ and $E$, respectively. Let $F$ be the second intersection point of $\odot ABD$ and $\odot ACE$. Prove that the angle bisector od $\angle FAP$ passes through the incenter of $\triangle ABC$.

2018 North Macedonia p5
Given is an acute $\triangle ABC$ with orthocenter $H$. The point $H'$ is symmetric to $H$ over the side $AB$. Let $N$ be the intersection point of $HH'$ and $AB$. The circle passing through $A$, $N$ and $H'$ intersects $AC$ for the second time in $M$, and the circle passing through $B$, $N$ and $H'$ intersects $BC$ for the second time in $P$. Prove that $M$, $N$ and $P$ are collinear.

2019 North Macedonia p1
In an acute-angled triangle $ABC$, point $M$ is the midpoint of side $BC$ and the centers of the $M$- excircles of triangles $AMB$ and $AMC$ are $D$ and $E$, respectively. The circumcircle of triangle $ABD$ intersects line $BC$ at points $B$ and $F$. The circumcircle of triangle $ACE$ intersects line $BC$ at points $C$ and $G$. Prove that $BF =   CG$ .

2019 North Macedonia p3 (2018 IMO SL G2)
Let $ABC$ be a triangle with $AB=AC$, and let $M$ be the midpoint of $BC$. Let $P$ be a point such that $PB<PC$ and $PA$ is parallel to $BC$. Let $X$ and $Y$ be points on the lines $PB$ and $PC$, respectively, so that $B$ lies on the segment $PX$, $C$ lies on the segment $PY$, and $\angle PXM=\angle PYM$. Prove that the quadrilateral $APXY$ is cyclic.

Let $ABC$ be a triangle, and $A_1, B_1, C_1$ be points on the sides $BC, CA, AB$, respectively, such that $AA_1, BB_1, CC_1$ are the internal angle bisectors of $\triangle ABC$. The circumcircle $k' = (A_1B_1C_1)$ touches the side $BC$ at $A_1$. Let $B_2$ and $C_2$, respectively, be the second intersection points of $k'$ with lines $AC$ and $AB$. Prove that $|AB| = |AC|$ or $|AC_1| = |AB_2|$.

Let $ABCD$ be a trapezoid with $AD \parallel BC$ and $\angle BCD < \angle ABC < 90^\circ$. Let $E$ be the intersection point of the diagonals $AC$ and $BD$. The circumcircle $\omega$ of $\triangle BEC$ intersects the segment $CD$ at $X$. The lines $AX$ and $BC$ intersect at $Y$, while the lines $BX$ and $AD$ intersect at $Z$. Prove that the line $EZ$ is tangent to $\omega$ iff the line $BE$ is tangent to the circumcircle of $\triangle BXY$.

No comments:

Post a Comment