drop down menu

Saturday, September 2, 2017

1984 BMO Problem 2 (ROM)

proposed by Romania
[solved , alternate solutions are welcome]

Let ABCD be a cyclic quadrilateral and let HA, HB, HC, HD  be the orthocenters of the triangles BCD, CDA, DAB and ABC respectively. Show that the quadrilaterals ABCD and HAHBHCHD  are congruent.

posted in facebook  here
solved in aops here

Θεωρούμε εγγράψιμο τετράπλευρο ABCD και τα ορθόκεντρα HAHBHCHD  των τριγώνων BCDCDADAB και ABC αντίστοιχως. Να αποδείξετε οτι τα τετράπλευρα ABCD and HAHBHCHD  είναι ίσα.


solved by Leo Giugiuc (using complex numbers)

No comments:

Post a Comment