geometry problems from Cyberspace Mathematical Competition (CMC)
with aops links in the names
2020
Let $ABC$ be a triangle such that $AB > BC$ and let $D$ be a variable point on the line segment $BC$. Let $E$ be the point on the circumcircle of triangle $ABC$, lying on the opposite side of $BC$ from $A$ such that $\angle BAE = \angle DAC$. Let $I$ be the incenter of triangle $ABD$ and let $J$ be the incenter of triangle $ACE$. Prove that the line $IJ$ passes through a fixed point, that is independent of $D$.
Find all integers $n\geq 3$ for which the following statement is true: If $\mathcal{P}$ is a convex $n$-gon such that $n-1$ of its sides have equal length and $n-1$ of its angles have equal measure, then $\mathcal{P}$ is a regular polygon. (A regular polygon is a polygon with all sides of equal length, and all angles of equal measure.)
No comments:
Post a Comment