drop down menu

Lithuania: Grand Duchy 2009-22 (BW TST) 14p

geometry problems from Grand Duchy of Lithuania Mathematical Contest (Baltic Way TST) with aops links in the names

started in 2009
aops forum collection here
collected inside aops here
2009-22


A triangle $ABC$ has an obtuse angle at $B$. The perpendicular at $B$ to $AB$ meets $AC$ at $D$, and $CD = AB$ . Prove that $ AD^2 = AB \cdot BC$ if and only if  $\angle CBD = 30^o$.

In the triangle $ABC$ angle $C$ is a right angle. On the side $AC$ point $D$ has been found, and on the segment $BD$ point K has been found such that $\angle ABC = \angle  KAD = \angle AKD$. Prove that $BK = 2DC$.

In the cyclic quadrilateral $ABCD$ with $AB = AD$, points $M$ and $N$ lie on the sides $CD$ and $BC$ respectively so that $MN = BN + DM$. Lines $AM$ and $AN$ meet the circumcircle of $ABCD$ again at points $P$ and $Q$ respectively. Prove that the orthocenter of the triangle $APQ$ lies on the segment $MN$.

The base $AB$ of a trapezium $ABCD$ is longer than the base $CD$, and $\angle ADC$ is a right angle. The diagonals $AC$ and $BD$ are perpendicular. Let $E$ be the foot of the altitude from $D$ to the line $BC$. Prove that $$\frac{AE}{BE} =\frac{ AC \cdot CD}{AC^2 - CD^2}$$

Let $ABC$ be an isosceles triangle with $AB = AC$. The points $D, E$ and $F$ are taken on the sides $BC, CA$ and $AB$, respectively, so that $\angle F DE = \angle ABC$ and $FE$ is not parallel to $BC$. Prove that the line $BC$ is tangent to the circumcircle of $\vartriangle DEF$ if and only if $D$ is the midpoint of the side $BC$.

An isosceles triangle $ABC$ with $AC = BC$ is given. Let $M$ be the midpoint of the side $AB$ and let $P$ be a point inside the triangle such that $\angle PAB = \angle PBC$. Prove that $\angle APM + \angle BPC = 180 ^o$

Let $\omega_1$ and $\omega_2$ be two circles , with respective centres $O_1$ and $O_2$ , that intersect each other in $A$ and $B$. The line $O_1A$ intersects $\omega_2$ in $A$ and $C$ and the line $O_2A$ inetersects $\omega_1$ in $A$ and $D$. The line through $B$ parallel to $AD$ intersects $\omega_1$ in $B$ and $E$. Suppose that $O_1A$ is parallel to $DE$. Show that $CD$ is perpendicular to $O_2C$.

Let $ABC$ be an isosceles triangle with $AB = AC$. Let $D, E$ and $F$ be points on line segments $BC, CA$ and $AB$, respectively, such that $BF = BE$ and such that $ED$ is the angle bisector of $\angle BEC$. Prove that $BD = EF$ if and only if $AF = EC$.

Let ABC be a triangle with $\angle A = 90^o$ and let $D$ be an orthogonal projection of $A$ onto $BC$. The midpoints of $AD$ and $AC$ are called $E$ and $F$, respectively. Let $M$ be the circumcentre of $\vartriangle BEF$. Prove that $AC\parallel BM$.

The altitudes $AD$ and $BE$ of an acute triangle $ABC$ intersect at point $H$. Let $F$ be the intersection of the line $AB$ and the line that is parallel to the side BC and goes through the circumcenter of $ABC$. Let $M$ be the midpoint of the segment $AH$. Prove that $\angle CMF = 90^o$

 Let $ABC$ be an acute triangle with orthocenter $H$ and circumcenter $O$. The perpendicular bisector of segment $CH$ intersects the sides $AC$ and $BC$ in points $X$ and $Y$ , respectively. The lines $XO$ and $YO$ intersect the side $AB$ in points $P$ and $Q$, respectively. Prove that if $XP + Y Q = AB + XY$ then $\angle OHC = 90^o$

The tangents of the circumcircle $\Omega$ of the triangle $ABC$ at points $B$ and $C$ intersect at point $P$. The perpendiculars drawn from point $P$ to lines $AB$ and $AC$ intersect at points$ D$ and $E$ respectively. Prove that the altitudes of the triangle $ADE$ intersect at the midpoint of the segment $BC$.

Let $ABCD$ be a convex quadrilateral satisfying $\angle ADB + \angle ACB = \angle CAB + \angle DBA = 30^o$, $AD = BC$. Prove that there exists a right-angled triangle with side lengths $AC$, $BD$, $CD$.

The center $O$ of the circle $\omega$ passing through the vertex $C$ of the isosceles triangle $ABC$ ($AB = AC$) is the interior point of the triangle $ABC$. This circle intersects segments $BC$ and $AC$ at points $D \ne C$ and $E  \ne C$, respectively, and the circumscribed circle $\Omega$ of the triangle $AEO$ at the point $F \ne E$. Prove that the center of the circumcircle of the triangle $BDF$ lies on the circle $\Omega$.

No comments:

Post a Comment