geometry problems from Final Mathematical Cups (FMC) with aops links in the names
started in 2019
collected inside aops here
2019 - 2020
Juniors
Let $ABC$ be a triangle and let $D, E$ are points on its circumscribed circle, such that $D$ lies on arc $AB, E$ lies on arc $AC$ (smaller arcs) and $BD \parallel CE$ . Let the point F be the intersection of the lines $DA$ and $CE$, and the intersection of the lines $EA$ and $BD$ is $G$. Let $P$ be the second intersection of the circumscribed circles of $\vartriangle ABG$ and $\vartriangle ACF$. Prove that the line$ AP$ passes through the mid point of the side $BC$.
Let $ABC$ be a triangle such that $\measuredangle BAC = 60^{\circ}$. Let $D$ and $E$ be the feet of the perpendicular from $A$ to the bisectors of the external angles of $B$ and $C$ in triangle $ABC$, respectively. Let $O$ be the circumcenter of the triangle $ABC$. Prove that circumcircle of the triangle $BOC$ has exactly one point in common with the circumcircle of $ADE$.
Let $ABC$ be an acute triangle, where $AB$ is the smallest side and let $D$ be the midpoint of $AB$. Let $P$ be a point in the interior of the triangle $ABC$ such that $\angle CAP = \angle CBP = \angle ACB$. From the point $P$, we draw perpendicular lines on $BC$ and $AC$ where the intersection point with $BC$ is $M$, and with $AC$ is $N$ . Through the point $M$ we draw a line parallel to $AC$, and through $N$ parallel to $BC$. These lines intercept at the point $K$. Prove that $D$ is the center of the circumscribed circle for the triangle $MNK$.
Seniors
2020 Final Mathematical Cup Seniors p1 (BMO Shortlist 2018 G5)
Let $ABC$ be an acute triangle with $AB<AC<BC$ and let $D$ be a point on it's extension of $BC$ towards $C$. Circle $c_1$, with center $A$ and radius $AD$, intersects lines $AC,AB$ and $CB$ at points $E,F$, and $G$ respectively. Circumscribed circle $c_2$ of triangle $AFG$ intersects again lines $FE,BC,GE$ and $DF$ at points $J,H,H' $ and $J'$ respectively. Circumscribed circle $c_3$ of triangle $ADE$ intersects again lines $FE,BC,GE$ and $DF$ at points $I,K,K' $ and $I' $ respectively. Prove that the quadrilaterals $HIJK$ and $H'I'J'K '$ are cyclic and the centers of their circumscribed circles coincide.
by Evangelos Psychas, Greece
Let $ABC$ be a triangle such that $\measuredangle BAC = 60^{\circ}$. Let $D$ and $E$ be the feet of the perpendicular from $A$ to the bisectors of the external angles of $B$ and $C$ in triangle $ABC$, respectively. Let $O$ be the circumcenter of the triangle $ABC$. Prove that circumcircle of the triangle $BOC$ has exactly one point in common with the circumcircle of $ADE$.
No comments:
Post a Comment