drop down menu

Korea North TST 2013 2p

 geometry problems from North Korean Team Selection Tests (TST) with aops links in the names


2013 only

2013 North Korea TST p1

The incircle of a non-isosceles triangle $ABC$ with the center $I$ touches the sides $ BC, CA, AB$ at $ A_1 , B_1 , C_1 $ respectively. The line $AI$ meets the circumcircle of $ABC$ at $A_2 $. The line $B_1 C_1 $ meets the line $BC$ at $A_3 $ and the line $A_2 A_3 $ meets the circumcircle of $ABC$ at $A_4 (\ne A_2 ) $. Define $B_4 , C_4 $ similarly. Prove that the lines $ AA_4 , BB_4 , CC_4 $ are concurrent.

2013 North Korea TST p5

The incircle $ \omega $ of a quadrilateral $ ABCD $ touches $ AB, BC, CD, DA $ at $ E, F, G, H $, respectively. Choose an arbitrary point $  X$ on the segment $ AC $ inside $ \omega $. The segments $ XB, XD $ meet $ \omega $ at $ I, J $ respectively. Prove that $ FJ, IG, AC $ are concurrent.


No comments:

Post a Comment