geometry problems from North Korean Team Selection Tests (TST) with aops links in the names
The incircle of a non-isosceles triangle $ABC$ with the center $I$ touches the sides $ BC, CA, AB$ at $ A_1 , B_1 , C_1 $ respectively. The line $AI$ meets the circumcircle of $ABC$ at $A_2 $. The line $B_1 C_1 $ meets the line $BC$ at $A_3 $ and the line $A_2 A_3 $ meets the circumcircle of $ABC$ at $A_4 (\ne A_2 ) $. Define $B_4 , C_4 $ similarly. Prove that the lines $ AA_4 , BB_4 , CC_4 $ are concurrent.
The incircle $ \omega $ of a quadrilateral $ ABCD $ touches $ AB, BC, CD, DA $ at $ E, F, G, H $, respectively. Choose an arbitrary point $ X$ on the segment $ AC $ inside $ \omega $. The segments $ XB, XD $ meet $ \omega $ at $ I, J $ respectively. Prove that $ FJ, IG, AC $ are concurrent.
No comments:
Post a Comment