drop down menu

Macedonia North Juniors 2020-21 3p

geometry problems from North Macedonian  Junior Mathematical Olympiad with aops links in the names


2020 - 2021


Let $ABC$ be an isosceles triangle with base $AC$. Points $D$ and $E$ are chosen on the sides $AC$ and $BC$, respectively, such that $CD = DE$. Let $H, J,$ and $K$ be the midpoints of $DE, AE,$ and $BD$, respectively. The circumcircle of triangle $DHK$ intersects $AD$ at point $F$, whereas the circumcircle of triangle $HEJ$ intersects $BE$ at $G$. The line through $K$ parallel to $AC$ intersects $AB$ at $I$. Let $IH \cap GF =$ {$M$}. Prove that $J, M,$ and $K$ are collinear points.

Let $ABCD$ be a tangential quadrilateral with inscribed circle $k(O,r)$ which is tangent to the sides $BC$ and $AD$ at $K$ and $L$, respectively. Show that the circle with diameter $OC$ passes through the intersection point of $KL$ and $OD$.

Let $ABC$ be an acute triangle and let $X$ and $Y$ be points on the segments $AB$ and $AC$ such that $BX = CY$. If $I_{B}$ and $I_{C}$ are centers of inscribed circles in triangles $ABY$ and $ACX$, and $T$ is the second intersection point of the circumcircles of $ABY$ and $ACX$, show that: $\frac{TI_{B}}{TI_{C}} = \frac{BY}{CX}.$ 


No comments:

Post a Comment