drop down menu

VMEO I-IV 2004-06, 2015 (VMF Vietnam) 21p

geometry problems from Vietnam Mathematical E-Olympiad (VMEO), a contest by Vietnam Mathematical Forum (VMF) with aops links in the names

geometry collected inside aops here

2004-06, 2015
(+ 2006 shortlist)



In the plane, given an angle $Axy$.
a) Given a triangle $MNP$ of area $T$, describe how to construct a triangle of given area $T$ and altitude $h$. Using this, describe how to construct parallelogram A$BCD$ with two sides lying on $Ax$ and $Ay$, the area $T$ and the distance between the two opposite sides equal to d given.
b) From an arbitrary point $I$ on the line $CD$, construct a line that intersects the lines $A$B, $BC$, $AD$ at $E$, $G$ and $F$ respectively so that the area of triangle $AEF$ is equal to the area of parallelogram $ABCD$.
c) Apply the above two sentences: Given any point $O$ in the plane. From $O$, construct a line that intersects two rays $Ax$ and $Ay$ at $E$ and $F$ respectively so that the area of triangle $AEF$ is equal to the area of any given triangle.

In a quadrilateral $ABCD$ let $E$ be the intersection of the two diagonals, I the center of the parallelogram whose vertices are the midpoints of the four sides of the quadrilateral, and K the center of the parallelogram whose sides pass through the points. divide the four sides of the quadrilateral into three equal parts (see illustration ).
a) Prove that $\overrightarrow{EK} =\frac43 \overrightarrow{EI}$.
b) Prove that$$\lambda_A \overrightarrow{KA} +\lambda_B \overrightarrow{KB} + \lambda_C \overrightarrow{KC} + \lambda_D \overrightarrow{KD} = \overrightarrow{0}$$, where
$$\lambda_A=1+\frac{S(ADB)}{S(ABCD)},\lambda_B=1+\frac{S(BCA)}{S(ABCD)},\lambda_C=1+\frac{S(CDB)}{S(ABCD)},\lambda_D=1+\frac{S(DAC)}{S(ABCD)}$$, where $S$ is the area symbol.



a) Let $ABC$ be a triangle and a point $I$ lies inside the triangle. Assume $\angle IBA > \angle ICA$ and $\angle IBC >\angle ICB$. Prove that, if extensions of $BI$, $CI$ intersect $AC$, $AB$ at $B'$, $C'$ respectively, then $BB' < CC'$.

b) Let $ABC$ be a triangle with $AB < AC$ and angle bisector $AD$. Prove that for every point $I, J$ on the segment $[AD]$ and $I \ne J$, we always have $\angle  JBI > \angle JCI$.

c) Let $ABC$ be a triangle with $AB < AC$ and angle bisector $AD$. Choose $M, N$ on segments $CD$ and $BD$, respectively, such that $AD$ is the bisector of angle $\angle MAN$. On the segment $[AD]$ take an arbitrary point $I$ (other than $D$). The lines $BI$, $CI$ intersect $AM$, $AN$ at $B', C'$. Prove that $BB' < CC'$.


For a given cyclic quadrilateral $ABCD$, let $I$ be a variable point on the diagonal $AC$ such that $I$ and $A$ are on the same side of the diagonal $BD$. Assume $E,F$ lie on the diagonal $BD$ such that $IE\parallel AB$ and $IF\parallel AD$. Show that $\angle  BIE =\angle  DCF $



Given a triangle $ABC$ ($AB \ne AC$). Let $ P$ be a point in the plane containing triangle $ABC$ satisfying the following property:
If the projections of $ P$ onto $AB$,$AC$ are $C_1$,$B_1$ respectively, then
$\frac{PB}{PC}=\frac{PC_1}{PB_1}=\frac{AB}{AC}$ or $\frac{PB}{PC}=\frac{PB_1}{PC_1}=\frac{AB}{AC}$.
Prove that $\angle PBC + \angle PCB = \angle BAC$.

Given a triangle $ABC$, incircle $(I)$ touches $BC,CA,AB$ at $D,E,F$ respectively. Let $M$ be a point inside $ABC$. Prove that $M$ lie on $(I)$ if and only if one number among $\sqrt{AE\cdot S_{BMC}},\sqrt{BF\cdot S_{CMA}},\sqrt{CD\cdot S_{AMB}}$ is sum of two remaining numbers ($S_{ABC}$ denotes the area of triangle $ABC$)

Given a triangle $ABC$ and a point $K$ . The lines $AK$,$BK$,$CK$ hit the opposite side of the triangle at $D,E,F$ respectively. On the exterior of $ABC$, we construct three pairs of similar triangles: $BDM$,$DCN$ on $BD$,$DC$, $CEP$,$EAQ$ on $CE$,$EA$, and $AFR$,$FBS$ on $AF$, $FB$. The lines $MN$,$PQ$,$RS$ intersect each other form a triangle $XYZ$. Prove that $AX$,$BY$,$CZ$ are concurrent.


Let $ABC$ be a triangle inscribed in a circle with center $O$. Let $A_1$ be a point on arc $BC$ that does not contain $ A$ such that the line perpendicular to $OA$ at $A_1$ intersects the lines $AB$ and $AC$ at two points and the line segment joining those two points has as midpoint $A_1$. Points $B_1$, $C_1$ are determined similarly. Prove that the lines $AA_1$, $BB_1$, $CC_1$ are concurrent.

Given a convex polygon $ G$, show that there are three vertices of $ G$ which form a triangle so that it's perimeter is not less than 70% of the polygon's perimeter.

Let $ABCD$ be an isosceles trapezoid, with a large base $CD$ and a small base $AB$. Let $M$ be any point on side $AB$ and $(d)$ be the line through $M$ and perpendicular to $AB$. Two rays $Mx$ and $My$ are said to satisfy the condition $(T)$ if they are symmetric about each other through $(d)$ and intersect the two rays $AD$ and $BC$ at $E$ and $F$ respectively. Find the locus of the midpoint of the segment $EF$ when the two rays $Mx$ and $My$ change and satisfy condition $(T)$.

Given a circle $(O)$ and a point $P$ outside that circle. $M$ is a point running on the circle $(O)$. The circle with center $I$ and diameter $PM$ intersects circle $(O)$ again at $N$. The tangent of $(I)$ at $P$ intersects $MN$ at $Q$. The line through $Q$ perpendicular to $PO$ intersects $PM$ at $ A$. $AN$ intersects $(O)$ further at $ B$. $BM$ intersects $PO$ at $C$. Prove that $AC$ is perpendicular to $OQ$.



Given a triangle $ABC$ with obtuse $\angle A$ and attitude $AH$ with $H \in BC$. Let $E,F$ on $CA$, $AB$ satisfying $\angle BEH = \angle C$ and $\angle CFH = \angle B$. Let $BE$ cut $CF$ at $D$. Prove that $DE = DF$.

Given an isosceles triangle $BAC$ with vertex angle $\angle BAC =20^o$. Construct an equilateral triangle $BDC$ such that $D,A$ are on the same side wrt $BC$. Construct an isosceles triangle $DEB$ with vertex angle $\angle EDB = 80^o$ and $C,E$ are on the different sides wrt $DB$. Prove that the triangle $AEC$ is isosceles at $E$.

Given a triangle $ABC$ inscribed in circle $(O)$ and let $P$ be a point on the interior angle bisector of $BAC$. $PB$, $PC$ cut $CA$, $AB$ at $E,F$ respectively. Let $EF$ meet $(O)$ at $M,N$. The line that is perpendicular to $PM$, $PN$ at $M,N$ respectively intersect $(O)$ at $S, T$ different from $M,N$. Prove that $ST \parallel BC$.

Given triangle $ABC$ and $P,Q$ are two isogonal conjugate points in $\triangle ABC$. $AP,AQ$ intersects $(QBC)$ and $(PBC)$ at $M,N$, respectively ( $M,N$ be inside triangle $ABC$)
1. Prove that $M,N,P,Q$ locate on a circle - named $(I)$
2. $MN\cap PQ$ at $J$. Prove that $IJ$ passed through a fixed line when $P,Q$ changed

Let $ABC$ be a triangle with two isogonal points $ P$ and $Q$ . Let $D, E$ be the projection of $P$ on $AB$, $AC$. $G$ is the projection of $Q$ on $BC$. $U$ is the projection of $G$ on $DE$, $ L$ is the projection of $P$ on $AQ$, $K$ is the symmetric of $L$ wrt $UG$. Prove that $UK$ passes through a fixed point when $P$ and $Q$ vary.

Triangle $ABC$ is inscribed in circle $(O)$. $ P$ is a point on arc $BC$ that does not contain $ A$ such that $AP$ is the symmedian of triangle $ABC$. $E ,F$ are symmetric of $P$ wrt $CA, AB$ respectively . $K$ is symmetric of $A$ wrt $EF$. $L$ is the projection of $K$ on the line passing through $A$ and parallel to $BC$. Prove that $PA=PL$.

2015 shortlist 

Given a circle $(O)$ and a point $P$ outside that circle. $M$ is a point running on the circle $(O)$. The circle with center $I$ and diameter $PM$ intersects circle $(O)$ again at $N$. The tangent of $(I)$ at $P$ intersects $MN$ at $Q$. The line through $Q$ perpendicular to $PO$ intersects $PM$ at $ A$. $AN$ intersects $(O)$ further at $ B$. $BM$ intersects $PO$ at $C$.
a) Prove that $AC$ is perpendicular to $OQ$.
b) Let $D$ be the intersection of $AC$ and $OQ$. Find the position of $M$ so that the length of segment $AD$ reaches the largest and smallest value (if any).

Given a triangle $ABC$, incircle $(I)$ touches $BC,CA,AB$ at $D,E,F$ respectively. Let $M$ be a point inside $ABC$. Prove that $M$ lie on $(I)$ if and only if one number among $\sqrt{AE\cdot S_{BMC}},\sqrt{BF\cdot S_{CMA}},\sqrt{CD\cdot S_{AMB}}$ is sum of two remaining numbers ($S_{ABC}$ denotes the area of triangle $ABC$)

The tetrahedron $OABC$ has all angles at vertex $O$ equal to $60^o$. Prove that$$AB \cdot BC + BC \cdot CA + CA \cdot AB \ge OA^2 + OB^2 + OC^2$$

Let $ABC$ be a triangle with circumscribed and inscribed circles $(O)$ and $(I)$ respectively. $AA'$,$BB'$,$CC'$ are the bisectors of triangle $ABC$. Prove that $OI$ passes through the the isogonal conjugate of point $I$ with respect to triangle $A'B'C'$.

Prove that there exists a family of rational circles with a distinct radius $\{(O_n)\}$ $(n = 1,2,3,...)$ satisfying the property that for all natural indices $n$, circles $(O_n)$,$( O_{n+1})$, $(O_{n+2})$,$(O_{n+3})$ are externally tangent like in the figure.

No comments:

Post a Comment