geometry problems from May Olympiads

1995 May Olympiad L1 P4

We have four white equilateral triangles of 3 cm on each side and join them by their sides to obtain a triangular base pir'amide. At each edge of the pyramid we mark two red dots that divide it into three equal parts. Number the red dots, so that when you scroll them in the order they were numbered, result a path with the smallest possible perimeter. How much does that path measure?

1996 May Olympiad L1 P1

A terrain ( $ABCD$ ) has a rectangular trapezoidal shape. The angle in $A$ measures $90^o$. $AB$ measures $30$ m, $AD$ measures $20$ m and $DC$ measures 45 m. This land must be divided into two areas of the same area, drawing a parallel to the $AD$ side . At what distance from $D$ do we have to draw the parallel?

1997 May Olympiad L1 P2

In the rectangle $ABCD, M, N, P$ and $Q$ are the midpoints of the sides. If the area of the shaded triangle is $1$, calculate the area of the rectangle $ABCD$.

1998 May Olympiad L1 P4

$ABCD$ is a square of center $O$. On the sides $DC$ and $AD$ the equilateral triangles $DAF$ and $DCE$ have been constructed. Decide if the area of the $EDF$ triangle is greater, less or equal to the area of the $DOC$ triangle.

1999 May Olympiad L1 P2

In a parallelogram $ABCD$ , $BD$ is the largest diagonal. By matching $B$ with $D$ by a bend, a regular pentagon is formed. Calculate the measures of the angles formed by the diagonal $BD$ with each of the sides of the parallelogram.

2000 May Olympiad L1 P2

Let's take a $ABCD$ rectangle of paper; the side $AB$ measures $5$ cm and the side $BC$ measures $9$ cm. We do three folds:

1.We take the $AB$ side on the $BC$ side and call $P$ the point on the $BC$ side that coincides with $A$. A right trapezoid $BCDQ$ is then formed.

2. We fold so that $B$ and $Q$ coincide. A $5$-sided polygon $RPCDQ$ is formed.

3. We fold again by matching $D$ with $C$ and $Q$ with $P$. A new right trapezoid $RPCS$.

After making these folds, we make a cut perpendicular to $SC$ by its midpoint $T$, obtaining the right trapezoid $RUTS$. Calculate the area of the figure that appears as we unfold the last trapezoid $RUTS$.

2002 May Olympiad L1 P2

A rectangular sheet of paper (white on one side and gray on the other) was folded three times, as shown in the figure:

Rectangle $1$, which was white after the first fold, has $20$ cm more perimeter than rectangle $2$, which was white after the second fold, and this in turn has $16$ cm more perimeter than rectangle $3$, which was white after the third fold. Determine the area of the sheet.

2003 May Olympiad L1 P2

The triangle $ABC$ is right in $A$ and $R$ is the midpoint of the hypotenuse $BC$ . On the major leg $AB$ the point $P$ is marked such that $CP = BP$ and on the segment $BP$ the point $Q$ is marked such that the triangle $PQR$ is equilateral. If the area of triangle $ABC$ is $27$, calculate the area of triangle $PQR$ .

2004 May Olympiad L1 P4

In a square $ABCD$ of diagonals $AC$ and $BD$, we call $O$ at the center of the square. A square $PQRS$ is constructed with sides parallel to those of $ABCD$ with $P$ in segment $AO, Q$ in segment $BO, R$ in segment $CO, S$ in segment $DO$. If area of $ABCD$ equals two times the area of $PQRS$, and $M$ is the midpoint of the $AB$ side, calculate the measure of the angle $\angle AMP$.

2005 May Olympiad L1 P4

There are two paper figures: an equilateral triangle and a rectangle. The height of rectangle is equal to the height of the triangle and the base of the rectangle is equal to the base of the triangle. Divide the triangle into three parts and the rectangle into two, using straight cuts, so that with the five pieces can be assembled, without gaps or overlays, a equilateral triangle. To assemble the figure, each part can be rotated and / or turned around.

2006 May Olympiad L1 P2

A rectangle of paper of $3$ cm by $9$ cm is folded along a straight line, making two opposite vertices coincide. In this way a pentagon is formed. Calculate your area.

2007 May Olympiad L1 P5

You have a paper pentagon, $ABCDE$, such that $AB = BC = 3$ cm, $CD = DE= 5$ cm, $EA = 4$ cm, $\angle ABC = 100^o , \angle CDE = 80^o$. You have to divide the pentagon into four triangles, by three straight cuts, so that with the four triangles assemble a rectangle, without gaps or overlays. (The triangles can be rotated and / or turned around.)

2008 May Olympiad L1 P4

Let $ABF$ be a right-angled triangle with $\angle AFB = 90$, a square $ABCD$ is externally to the triangle. If $FA = 6$, $FB = 8$ and $E$ is the circumcenter of the square $ABCD$, determine the value of $EF$

2009 May Olympiad L1 P4

Three circumferences are tangent to each other, as shown in the figure. The region of the outer circle that is not covered by the two inner circles has an area equal to $2$ p. Determine the length of the $PQ$ segment

2010 May Olympiad L1 P1

A closed container in the shape of a rectangular parallelepiped contains $1$ liter of water. If the container rests horizontally on three different sides, the water level is $2$ cm, $4$ cm and $5$ cm. Calculate the volume of the parallelepiped.

2011 May Olympiad L1 P3

In the rectangle $ABCD, BC = 5, EC = 1/3 CD$ and $F$ is the point where $AE$ and $BD$ are cut. The triangle $DFE$ has area $12$ and the triangle $ABF$ has area $27$. Find the area of the quadrilateral $BCEF$ .

2012 May Olympiad L1 P1

From a paper quadrilateral like the one in the figure, you have to cut out a new quadrilateral whose area is equal to half the area of the original quadrilateral.You can only bend one or more times and cut by some of the lines of the folds. Describe the folds and cuts and justify that the area is half.

2013 May Olympiad L1 P3

Let $ABCD$ be a square of side paper $10$ and $P$ a point on side $BC$. By folding the paper along the $AP$ line, point $B$ determines the point $Q$, as seen in the figure. The line $PQ$ cuts the side $CD$ at $R$. Calculate the perimeter of the$ PCR$ triangle.

2014 May Olympiad L1 P4

Let $ABC$ be a right triangle and isosceles, with $\angle C = 90^o$. Let $M$ be the midpoint of $AB$ and $N$ the midpoint of $AC$. Let $P$ be such that $MNP$ is an equilateral triangle with $P$ inside the quadrilateral $MBCN$. Calculate the measure of $\angle CAP$

2015 May Olympiad L1 P3

In the quadrilateral $ABCD$, we have $\angle C$ is triple of $\angle A$, let $P$ be a point in the side $AB$ such that $\angle DPA = 90º$ and let $Q$ be a point in the segment $DA$ where $\angle BQA = 90º$ the segments $DP$ and $CQ$ intersects in $O$ such that $BO = CO = DO$, find $\angle A$ and $\angle C$.

2016 May Olympiad L1 P4

In a triangle $ABC$, let $D$ and $E$ point in the sides $BC$ and $AC$ respectively. The segments $AD$ and $BE$ intersects in $O$, let $r$ be line (parallel to $AB$) such that $r$ intersects $DE$ in your midpoint, show that the triangle $ABO$ and the quadrilateral $ODCE$ have the same area.

2017 May Olympiad L1 P3

Let $ABCD$ be a rhombus of sides $AB = BC = CD= DA = 13$. On the side $AB$ construct the rhombus $BAFC$ outside $ABCD$ and such that the side $AF$ is parallel to the diagonal $BD$ of $ABCD$. If the area of $BAFE$ is equal to $65$, calculate the area of $ABCD$.

You have to divide a square paper into three parts, by two straight cuts, so that by locating these parts properly, without gaps or overlaps, an obtuse triangle is formed. Indicate how to cut the square and how to assemble the triangle with the three parts.

www.oma.org.ar/enunciados/index.htm

[a Junior Competition]

with aops links in the names
Olimpíada de Mayo / Maio

Consider a pyramid whose base is an equilateral triangle $BCD$ and whose other faces are triangles isosceles, right at the common vertex $A$. An ant leaves the vertex $B$ arrives at a point $P$ of the $CD$ edge, from there goes to a point $Q$ of the edge $AC$ and returns to point $B$. If the path you made is minimal, how much is the angle $PQA$ ?

Let $ABCD$ be a rectangle. A line $r$ moves parallel to $AB$ and intersects diagonal $AC$ , forming two triangles opposite the vertex, inside the rectangle. Prove that the sum of the areas of these triangles is minimal when $r$ passes through the midpoint of segment $AD$ .

Let $ABCD$ be a square and let point $F$ be any point on side $BC$. Let the line perpendicular to $DF$, that passes through $B$, intersect line $DC$ at $Q$. What is value of $\angle FQC$?

In a square $ABCD$ with side $k$, let $P$ and $Q$ in $BC$ and $DC$ respectively, where $PC = 3PB$ and $QD = 2QC$. Let $M$ be the point of intersection of the lines $AQ$ and $PD$, determine the area of $QMD$ in function of $k$

Let $ABC$ be an equilateral triangle. $N$ is a point on the side $AC$ such that $\vec{AC} = 7\vec{AN}$, $M$ is a point on the side $AB$ such that $MN$ is parallel to $BC$ and $P$ is a point on the side $BC$ such that $MP$ is parallel to $AC$. Find the ratio of areas $\frac{ (MNP)}{(ABC)}$

In a unit circle where $O$ is your circumcenter, let $A$ and $B$ points in the circle with $\angle BOA = 90$. In the arc $AB$(minor arc) we have the points $P$ and $Q$ such that $PQ$ is parallel to $AB$. Let $X$ and $Y$ be the points of intersections of the line $PQ$ with $OA$ and $OB$ respectively. Find the value of $PX^2 + PY^2$

1999 May Olympiad L2 P4

Let $ABC$ be an equilateral triangle. $M$ is the midpoint of segment $AB$ and $N$ is the midpoint of segment $BC$. Let $P$ be the point outside $ABC$ such that the triangle $ACP$ is isosceles and right in $P$. $PM$ and $AN$ are cut in $I$. Prove that $CI$ is the bisector of the angle $MCA$ .

Let $ABC$ be an equilateral triangle. $M$ is the midpoint of segment $AB$ and $N$ is the midpoint of segment $BC$. Let $P$ be the point outside $ABC$ such that the triangle $ACP$ is isosceles and right in $P$. $PM$ and $AN$ are cut in $I$. Prove that $CI$ is the bisector of the angle $MCA$ .

Given a parallelogram with area $1$ and we will construct lines where this lines connect a vertex with a midpoint of the side no adjacent to this vertex; with the $8$ lines formed we have a octagon inside of the parallelogram. Determine the area of this octagon.

Let $S$ be a circle with radius $2$, let $S_1$ be a circle,with radius $1$ and tangent, internally to $S$ in $B$ and let $S_2$ be a circle, with radius $1$ and tangent to $S_1$ in $A$, but $S_2$ isn't tangent to $S$. If $K$ is the point of intersection of the line $AB$ and the circle $S$, prove that $K$ is in the circle $S_2$

2001 May Olympiad L2 P2

On the trapezoid $ABCD$ , side $DA$ is perpendicular to the bases $AB$ and $CD$ . The base $AB$ measures $45$, the base $CD$ measures $20$ and the $BC$ side measures $65$. Let $P$ on the $BC$ side such that $BP$ measures $45$ and $M$ is the midpoint of $DA$. Calculate the measure of the $PM$ segment.

On the trapezoid $ABCD$ , side $DA$ is perpendicular to the bases $AB$ and $CD$ . The base $AB$ measures $45$, the base $CD$ measures $20$ and the $BC$ side measures $65$. Let $P$ on the $BC$ side such that $BP$ measures $45$ and $M$ is the midpoint of $DA$. Calculate the measure of the $PM$ segment.

2002 May Olympiad L2 P3

In a triangle $ABC$, right in $A$ and isosceles, let $D$ be a point on the side $AC$ ($A \ne D \ne C$) and $E$ be the point on the extension of $BA$ such that the triangle $ADE$ is isosceles. Let $P$ be the midpoint of segment $BD$, $R$ be the midpoint of the segment $CE$ and $Q$ the point of intersection of $ED$ and $BC$. Prove that the quadrilateral $ARQP$ is a square.

In a triangle $ABC$, right in $A$ and isosceles, let $D$ be a point on the side $AC$ ($A \ne D \ne C$) and $E$ be the point on the extension of $BA$ such that the triangle $ADE$ is isosceles. Let $P$ be the midpoint of segment $BD$, $R$ be the midpoint of the segment $CE$ and $Q$ the point of intersection of $ED$ and $BC$. Prove that the quadrilateral $ARQP$ is a square.

2003 May Olympiad L2 P2

Let $ABCD$ be a rectangle of sides $AB = 4$ and $BC = 3$. The perpendicular on the diagonal $BD$ drawn from $A$ cuts $BD$ at point $H$. We call $M$ the midpoint of $BH$ and $N$ the midpoint of $CD$. Calculate the measure of the segment $MN$.

2003 May Olympiad L2 P5

Let $ABCD$ be a rectangle of sides $AB = 4$ and $BC = 3$. The perpendicular on the diagonal $BD$ drawn from $A$ cuts $BD$ at point $H$. We call $M$ the midpoint of $BH$ and $N$ the midpoint of $CD$. Calculate the measure of the segment $MN$.

2003 May Olympiad L2 P5

An ant, which is on an edge of a cube of side $8$, must travel on the surface and return to the starting point. It's path must contain interior points of the six faces of the cube and should visit only once each face of the cube. Find the length of the path that the ant can carry out and justify why it is the shortest path.

We have a pool table $8$ meters long and $2$ meters wide with a single ball in the center. We throw the ball in a straight line and, after traveling $29$ meters, it stops at a corner of the table. How many times did the ball hit the edges of the table?

Note: When the ball rebounds on the edge of the table, the two angles that form its trajectory with the edge of the table are the same.

Note: When the ball rebounds on the edge of the table, the two angles that form its trajectory with the edge of the table are the same.

In a triangle $ABC$ with $AB = AC$, let $M$ be the midpoint of $CB$ and let $D$ be a point in $BC$ such that $\angle BAD = \frac{\angle BAC}{6}$. The perpendicular line to $AD$ by $C$ intersects $AD$ in $N$ where $DN = DM$. Find the angles of the triangle $BAC$

Let $ABCD$ be a trapezoid of $AB$ and $CD$ bases. Let $O$ be the point of intersection of your diagonals $AC$ and $BD$. If the area of the triangle $ABC$ is $150$ and the area of the triangle $ACD$ is $120$, calculate the area of the triangle $BCO$.

In the triangle $ABC$ we have $\angle A = 2\angle C$ and $2\angle B = \angle A + \angle C$. The angle bisector of $\angle C$ intersects the segment $AB$ in $E$, let $F$ be the midpoint of $AE$, let $AD$ be the altitude of the triangle $ABC$. The perpendicular bisector of $DF$ intersects $AC$ in $M$. Prove that $AM = CM$

2008 May Olympiad L2 P2

Let $ABCD$ be a rectangle and $P$ be a point on the side$ AD$ such that $\angle BPC = 90^o$. The perpendicular from $A$ on $BP$ cuts $BP$ at $M$ and the perpendicular from $D$ on $CP$ cuts $CP$ in $N$. Show that the center of the rectangle lies in the $MN$ segment.

2009 May Olympiad L2 P2

Let $ABCD$ be a convex quadrilateral such that the triangle $ABD$ is equilateral and the triangle $BCD$ is isosceles, with $\angle C = 90^o$. If $E$ is the midpoint of the side $AD$, determine the measure of the angle $\angle CED$.

Let $ABCD$ be a rectangle and $P$ be a point on the side$ AD$ such that $\angle BPC = 90^o$. The perpendicular from $A$ on $BP$ cuts $BP$ at $M$ and the perpendicular from $D$ on $CP$ cuts $CP$ in $N$. Show that the center of the rectangle lies in the $MN$ segment.

2009 May Olympiad L2 P2

Let $ABCD$ be a convex quadrilateral such that the triangle $ABD$ is equilateral and the triangle $BCD$ is isosceles, with $\angle C = 90^o$. If $E$ is the midpoint of the side $AD$, determine the measure of the angle $\angle CED$.

2010 May Olympiad L2 P2

Let $ABCD$ be a rectangle and the circle of center $D$ and radius $DA$, which cuts the extension of the side $AD$ at point $P$. Line $PC$ cuts the circle at point $Q$ and the extension of the side $AB$ at point $R$. Show that $QB = BR$.

2011 May Olympiad L2 P3

Let $ABCD$ be a rectangle and the circle of center $D$ and radius $DA$, which cuts the extension of the side $AD$ at point $P$. Line $PC$ cuts the circle at point $Q$ and the extension of the side $AB$ at point $R$. Show that $QB = BR$.

2011 May Olympiad L2 P3

In a right triangle rectangle $ABC$ such that $AB = AC$, $M$ is the midpoint of $BC$. Let $P$ be a point on the perpendicular bisector of $AC$, lying in the semi-plane determined by $BC$ that does not contain $A$. Lines $CP$ and $AM$ intersect at $Q$. Calculate the angles that form the lines $AP$ and $BQ$.

Given Triangle $ABC$, $\angle B= 2 \angle C$, and $\angle A>90^\circ$. Let $M$ be midpoint of $BC$. Perpendicular of $AC$ at $C$ intersects $AB$ at $D$. Show $\angle AMB = \angle DMC$

2013 May Olympiad L2 P2

Construct the midpoint of a segment using an unmarked ruler and a trisector that marks in a segment the two points that divide the segment in three equal parts.

Construct the midpoint of a segment using an unmarked ruler and a trisector that marks in a segment the two points that divide the segment in three equal parts.

2014 May Olympiad L2 P2

In a convex quadrilateral $ABCD$, let $M$, $N$, $P$, and $Q$ be the midpoints of $AB$, $BC$, $CD$, and $DA$ respectively. If $MP$ and $NQ$ divide $ABCD$ in four quadrilaterals with the same area, prove that $ABCD$ is a parallelogram.

In a convex quadrilateral $ABCD$, let $M$, $N$, $P$, and $Q$ be the midpoints of $AB$, $BC$, $CD$, and $DA$ respectively. If $MP$ and $NQ$ divide $ABCD$ in four quadrilaterals with the same area, prove that $ABCD$ is a parallelogram.

2015 May Olympiad L2 P3

Let $ABCDEFGHI$ be a regular polygon of $9$ sides. The segments $AE$ and $DF$ intersect at $P$. Prove that $PG$ and $AF$ are perpendicular.

Let $ABCDEFGHI$ be a regular polygon of $9$ sides. The segments $AE$ and $DF$ intersect at $P$. Prove that $PG$ and $AF$ are perpendicular.

2016 May Olympiad L2 P4

In a triangle $ABC$, let $D$ and $E$ be points of the sides $ BC$ and $AC$ respectively. Segments $AD$ and $BE$ intersect at $O$. Suppose that the line connecting midpoints of the triangle and parallel to $AB$, bisects the segment $DE$. Prove that the triangle $ABO$ and the quadrilateral $ODCE$ have equal areas.

In a triangle $ABC$, let $D$ and $E$ be points of the sides $ BC$ and $AC$ respectively. Segments $AD$ and $BE$ intersect at $O$. Suppose that the line connecting midpoints of the triangle and parallel to $AB$, bisects the segment $DE$. Prove that the triangle $ABO$ and the quadrilateral $ODCE$ have equal areas.

Let $ABCD$ be a quadrilateral such that $\angle ABC = \angle ADC = 90º$ and $\angle BCD$ > $90º$. Let $P$ be a point inside of the $ABCD$ such that $BCDP$ is parallelogram, the line $AP$ intersects $BC$ in $M$. If $BM = 2, MC = 5, CD = 3$. Find the length of $AM$.

2018 May Olympiad L2 P4

In a parallelogram $ABCD$, let $M$ be the point on the $BC$ side such that $MC = 2BM$ and let $N$ be the point of side $CD$ such that $NC = 2DN$. If the distance from point $B$ to the line $AM$ is $3$, calculate the distance from point $N$ to the line $AM$.

In a parallelogram $ABCD$, let $M$ be the point on the $BC$ side such that $MC = 2BM$ and let $N$ be the point of side $CD$ such that $NC = 2DN$. If the distance from point $B$ to the line $AM$ is $3$, calculate the distance from point $N$ to the line $AM$.

On the sides $AB, BC$ and $CA$ of a triangle $ABC$ are located the points $P, Q$ and $R$ respectively, such that $BQ = 2QC, CR = 2RA$ and $\angle PRQ = 90^o$. Show that $\angle APR =\angle RPQ$.

Level 1 (<=13yo)We have four white equilateral triangles of 3 cm on each side and join them by their sides to obtain a triangular base pir'amide. At each edge of the pyramid we mark two red dots that divide it into three equal parts. Number the red dots, so that when you scroll them in the order they were numbered, result a path with the smallest possible perimeter. How much does that path measure?

1996 May Olympiad L1 P1

A terrain ( $ABCD$ ) has a rectangular trapezoidal shape. The angle in $A$ measures $90^o$. $AB$ measures $30$ m, $AD$ measures $20$ m and $DC$ measures 45 m. This land must be divided into two areas of the same area, drawing a parallel to the $AD$ side . At what distance from $D$ do we have to draw the parallel?

1997 May Olympiad L1 P2

In the rectangle $ABCD, M, N, P$ and $Q$ are the midpoints of the sides. If the area of the shaded triangle is $1$, calculate the area of the rectangle $ABCD$.

1998 May Olympiad L1 P4

$ABCD$ is a square of center $O$. On the sides $DC$ and $AD$ the equilateral triangles $DAF$ and $DCE$ have been constructed. Decide if the area of the $EDF$ triangle is greater, less or equal to the area of the $DOC$ triangle.

1999 May Olympiad L1 P2

In a parallelogram $ABCD$ , $BD$ is the largest diagonal. By matching $B$ with $D$ by a bend, a regular pentagon is formed. Calculate the measures of the angles formed by the diagonal $BD$ with each of the sides of the parallelogram.

2000 May Olympiad L1 P2

Let $ABC$ be a right triangle in $A$ , whose leg measures $1$ cm. The bisector of the angle $BAC$ cuts the hypotenuse in $R$, the perpendicular to $AR$ on $R$ , cuts the side $AB$ at its midpoint. Find the measurement of the side $AB$ .

2001 May Olympiad L1 P2Let's take a $ABCD$ rectangle of paper; the side $AB$ measures $5$ cm and the side $BC$ measures $9$ cm. We do three folds:

1.We take the $AB$ side on the $BC$ side and call $P$ the point on the $BC$ side that coincides with $A$. A right trapezoid $BCDQ$ is then formed.

2. We fold so that $B$ and $Q$ coincide. A $5$-sided polygon $RPCDQ$ is formed.

3. We fold again by matching $D$ with $C$ and $Q$ with $P$. A new right trapezoid $RPCS$.

After making these folds, we make a cut perpendicular to $SC$ by its midpoint $T$, obtaining the right trapezoid $RUTS$. Calculate the area of the figure that appears as we unfold the last trapezoid $RUTS$.

2002 May Olympiad L1 P2

A rectangular sheet of paper (white on one side and gray on the other) was folded three times, as shown in the figure:

Rectangle $1$, which was white after the first fold, has $20$ cm more perimeter than rectangle $2$, which was white after the second fold, and this in turn has $16$ cm more perimeter than rectangle $3$, which was white after the third fold. Determine the area of the sheet.

2003 May Olympiad L1 P2

The triangle $ABC$ is right in $A$ and $R$ is the midpoint of the hypotenuse $BC$ . On the major leg $AB$ the point $P$ is marked such that $CP = BP$ and on the segment $BP$ the point $Q$ is marked such that the triangle $PQR$ is equilateral. If the area of triangle $ABC$ is $27$, calculate the area of triangle $PQR$ .

2004 May Olympiad L1 P4

In a square $ABCD$ of diagonals $AC$ and $BD$, we call $O$ at the center of the square. A square $PQRS$ is constructed with sides parallel to those of $ABCD$ with $P$ in segment $AO, Q$ in segment $BO, R$ in segment $CO, S$ in segment $DO$. If area of $ABCD$ equals two times the area of $PQRS$, and $M$ is the midpoint of the $AB$ side, calculate the measure of the angle $\angle AMP$.

2005 May Olympiad L1 P4

There are two paper figures: an equilateral triangle and a rectangle. The height of rectangle is equal to the height of the triangle and the base of the rectangle is equal to the base of the triangle. Divide the triangle into three parts and the rectangle into two, using straight cuts, so that with the five pieces can be assembled, without gaps or overlays, a equilateral triangle. To assemble the figure, each part can be rotated and / or turned around.

2006 May Olympiad L1 P2

A rectangle of paper of $3$ cm by $9$ cm is folded along a straight line, making two opposite vertices coincide. In this way a pentagon is formed. Calculate your area.

2007 May Olympiad L1 P5

You have a paper pentagon, $ABCDE$, such that $AB = BC = 3$ cm, $CD = DE= 5$ cm, $EA = 4$ cm, $\angle ABC = 100^o , \angle CDE = 80^o$. You have to divide the pentagon into four triangles, by three straight cuts, so that with the four triangles assemble a rectangle, without gaps or overlays. (The triangles can be rotated and / or turned around.)

2008 May Olympiad L1 P4

Let $ABF$ be a right-angled triangle with $\angle AFB = 90$, a square $ABCD$ is externally to the triangle. If $FA = 6$, $FB = 8$ and $E$ is the circumcenter of the square $ABCD$, determine the value of $EF$

2009 May Olympiad L1 P4

Three circumferences are tangent to each other, as shown in the figure. The region of the outer circle that is not covered by the two inner circles has an area equal to $2$ p. Determine the length of the $PQ$ segment

2010 May Olympiad L1 P1

A closed container in the shape of a rectangular parallelepiped contains $1$ liter of water. If the container rests horizontally on three different sides, the water level is $2$ cm, $4$ cm and $5$ cm. Calculate the volume of the parallelepiped.

2011 May Olympiad L1 P3

In the rectangle $ABCD, BC = 5, EC = 1/3 CD$ and $F$ is the point where $AE$ and $BD$ are cut. The triangle $DFE$ has area $12$ and the triangle $ABF$ has area $27$. Find the area of the quadrilateral $BCEF$ .

2012 May Olympiad L1 P1

From a paper quadrilateral like the one in the figure, you have to cut out a new quadrilateral whose area is equal to half the area of the original quadrilateral.You can only bend one or more times and cut by some of the lines of the folds. Describe the folds and cuts and justify that the area is half.

2013 May Olympiad L1 P3

Let $ABCD$ be a square of side paper $10$ and $P$ a point on side $BC$. By folding the paper along the $AP$ line, point $B$ determines the point $Q$, as seen in the figure. The line $PQ$ cuts the side $CD$ at $R$. Calculate the perimeter of the$ PCR$ triangle.

2014 May Olympiad L1 P4

Let $ABC$ be a right triangle and isosceles, with $\angle C = 90^o$. Let $M$ be the midpoint of $AB$ and $N$ the midpoint of $AC$. Let $P$ be such that $MNP$ is an equilateral triangle with $P$ inside the quadrilateral $MBCN$. Calculate the measure of $\angle CAP$

2015 May Olympiad L1 P3

In the quadrilateral $ABCD$, we have $\angle C$ is triple of $\angle A$, let $P$ be a point in the side $AB$ such that $\angle DPA = 90º$ and let $Q$ be a point in the segment $DA$ where $\angle BQA = 90º$ the segments $DP$ and $CQ$ intersects in $O$ such that $BO = CO = DO$, find $\angle A$ and $\angle C$.

2016 May Olympiad L1 P4

In a triangle $ABC$, let $D$ and $E$ point in the sides $BC$ and $AC$ respectively. The segments $AD$ and $BE$ intersects in $O$, let $r$ be line (parallel to $AB$) such that $r$ intersects $DE$ in your midpoint, show that the triangle $ABO$ and the quadrilateral $ODCE$ have the same area.

2017 May Olympiad L1 P3

Let $ABCD$ be a rhombus of sides $AB = BC = CD= DA = 13$. On the side $AB$ construct the rhombus $BAFC$ outside $ABCD$ and such that the side $AF$ is parallel to the diagonal $BD$ of $ABCD$. If the area of $BAFE$ is equal to $65$, calculate the area of $ABCD$.

Let $ABCDEFGHIJ$ be a regular $10$-sided polygon that has all its vertices in one circle with center $O$ and radius $5$. The diagonals $AD$ and $BE$ intersect at $P$ and the diagonals $AH$ and $BI$ intersect at $Q$. Calculate the measure of the segment $PQ$.

__source:__www.oma.org.ar/enunciados/index.htm

## Δεν υπάρχουν σχόλια:

## Δημοσίευση σχολίου