geometry problems from National Internet Math Olympiads (NIMO) Summer & Winter Contests
with aops links in the names
Summer Contests 2011 -2017
2011 NIMO Summer Contest p5
In equilateral triangle $ABC$, the midpoint of $\overline{BC}$ is $M$. If the circumcircle of triangle $MAB$ has area $36\pi$, then find the perimeter of the triangle.
2011 NIMO Summer Contest p8
Triangle $ABC$ with $\measuredangle A = 90^\circ$ has incenter $I$. A circle passing through $A$ with center $I$ is drawn, intersecting $\overline{BC}$ at $E$ and $F$ such that $BE < BF$. If $\tfrac{BE}{EF} = \tfrac{2}{3}$, then $\tfrac{CF}{FE} = \tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.
2011 NIMO Summer Contest p12
In triangle $ABC$, $AB = 100$, $BC = 120$, and $CA = 140$. Points $D$ and $F$ lie on $\overline{BC}$ and $\overline{AB}$, respectively, such that $BD = 90$ and $AF = 60$. Point $E$ is an arbitrary point on $\overline{AC}$. Denote the intersection of $\overline{BE}$ and $\overline{CF}$ as $K$, the intersection of $\overline{AD}$ and $\overline{CF}$ as $L$, and the intersection of $\overline{AD}$ and $\overline{BE}$ as $M$. If $[KLM] = [AME] + [BKF] + [CLD]$, where $[X]$ denotes the area of region $X$, compute $CE$.
2011 NIMO Summer Contest p14
In circle $\theta_1$ with radius $1$, circles $\phi_1, \phi_2, \dots, \phi_8$, with equal radii, are drawn such that for $1 \le i \le 8$, $\phi_i$ is tangent to $\omega_1$, $\phi_{i-1}$, and $\phi_{i+1}$, where $\phi_0 = \phi_8$ and $\phi_1 = \phi_9$. There exists a circle $\omega_2$ such that $\omega_1 \neq \omega_2$ and $\omega_2$ is tangent to $\phi_i$ for $1 \le i \le 8$. The radius of $\omega_2$ can be expressed in the form $a - b\sqrt{c} -d\sqrt{e - \sqrt{f}} + g \sqrt{h - j \sqrt{k}}$ such that $a, b, \dots, k$ are positive integers and the numbers $e, f, k, \gcd(h, j)$ are squarefree. What is $a+b+c+d+e+f+g+h+j+k$.
In the diagram below, three squares are inscribed in right triangles. Their areas are $A$, $M$, and $N$, as indicated in the diagram. If $M = 5$ and $N = 12$, then $A$ can be expressed as $a + b\sqrt{c}$, where $a$, $b$, and $c$ are positive integers and $c$ is not divisible by the square of any prime. Compute $a + b + c$.
2012 NIMO Summer Contest p8
In the diagram below, square $ABCD$ with side length 23 is cut into nine rectangles by two lines parallel to $\overline{AB}$ and two lines parallel to $\overline{BC}$. The areas of four of these rectangles are indicated in the diagram. Compute the largest possible value for the area of the central rectangle.
In $\triangle ABC$, $AB = 40$, $BC = 60$, and $CA = 50$. The angle bisector of $\angle A$ intersects the circumcircle of $\triangle ABC$ at $A$ and $P$. Find $BP$.
In trapezoid $ABCD$, $AD \parallel BC$ and $\angle ABC + \angle CDA = 270^{\circ}$. Compute $AB^2$ given that $AB \cdot \tan(\angle BCD) = 20$ and $CD = 13$.
2014 NIMO Summer Contest p3
A square and equilateral triangle have the same perimeter. If the triangle has area $16\sqrt3$, what is the area of the square?
Aaron takes a square sheet of paper, with one corner labeled $A$. Point $P$ is chosen at random inside of the square and Aaron folds the paper so that points $A$ and $P$ coincide. He cuts the sheet along the crease and discards the piece containing $A$. Let $p$ be the probability that the remaining piece is a pentagon. Find the integer nearest to $100p$.
Let $ABC$ be a triangle with circumcenter $O$ and let $X$, $Y$, $Z$ be the midpoints of arcs $BAC$, $ABC$, $ACB$ on its circumcircle. Let $G$ and $I$ denote the centroid of $\triangle XYZ$ and the incenter of $\triangle ABC$.
Given that $AB = 13$, $BC = 14$, $CA = 15$, and $\frac {GO}{GI} = \frac mn$ for relatively prime positive integers $m$ and $n$, compute $100m+n$.
2015 NIMO Summer Contest p5
Let $\triangle ABC$ have $AB=3$, $AC=5$, and $\angle A=90^\circ$. Point $D$ is the foot of the altitude from $A$ to $\overline{BC}$, and $X$ and $Y$ are the feet of the altitudes from $D$ to $\overline{AB}$ and $\overline{AC}$ respectively. If $XY^2$ can be written in the form $\tfrac mn$ where $m$ and $n$ are positive relatively prime integers, what is $100m+n$?
Let $ABCD$ be a tetrahedron with $AB=CD=1300$, $BC=AD=1400$, and $CA=BD=1500$. Let $O$ and $I$ be the centers of the circumscribed sphere and inscribed sphere of $ABCD$, respectively. Compute the smallest integer greater than the length of $OI$.
Let $\triangle ABC$ be a triangle with $AB=85$, $BC=125$, $CA=140$, and incircle $\omega$. Let $D$, $E$, $F$ be the points of tangency of $\omega$ with $\overline{BC}$, $\overline{CA}$, $\overline{AB}$ respectively, and furthermore denote by $X$, $Y$, and $Z$ the incenters of $\triangle AEF$, $\triangle BFD$, and $\triangle CDE$, also respectively. Find the circumradius of $\triangle XYZ$.
In rectangle $ABCD$, point $M$ is the midpoint of $AB$ and $P$ is a point on side $BC$. The perpendicular bisector of $MP$ intersects side $DA$ at point $X$. Given that $AB = 33$ and $BC = 56$, find the least possible value of $MX$.
The square $BCDE$ is inscribed in circle $\omega$ with center $O$. Point $A$ is the reflection of $O$ over $B$. A "hook" is drawn consisting of segment $AB$ and the major arc $\widehat{BE}$ of $\omega$ (passing through $C$ and $D$). Assume $BCDE$ has area $200$. To the nearest integer, what is the length of the hook?
In triangle $ABC$ we have $AB=36$, $BC=48$, $CA=60$. The incircle of $ABC$ is centered at $I$ and touches $AB$, $AC$, $BC$ at $M$, $N$, $D$, respectively. Ray $AI$ meets $BC$ at $K$. The radical axis of the circumcircles of triangles $MAN$ and $KID$ intersects lines $AB$ and $AC$ at $L_1$ and $L_2$, respectively. If $L_1L_2 = x$, compute $x^2$.
Triangle $ABC$ has $AB = 2$, $BC = 3$, $CA = 4$, and circumcenter $O$. If the sum of the areas of triangles $AOB$, $BOC$, and $COA$ is $\tfrac{a\sqrt{b}}{c}$ for positive integers $a$, $b$, $c$, where $\gcd(a, c) = 1$ and $b$ is not divisible by the square of any prime, find $a+b+c$.
with aops links in the names
Winter Contests 2011 -2014
lasted only these years
Circle $\odot O$ with diameter $\overline{AB}$ has chord $\overline{CD}$ drawn such that $\overline{AB}$ is perpendicular to $\overline{CD}$ at $P$. Another circle $\odot A$ is drawn, sharing chord $\overline{CD}$. A point $Q$ on minor arc $\overline{CD}$ of $\odot A$ is chosen so that $\text{m} \angle AQP + \text{m} \angle QPB = 60^\circ$. Line $l$ is tangent to $\odot A$ through $Q$ and a point $X$ on $l$ is chosen such that $PX=BX$. If $PQ = 13$ and $BQ = 35$, find $QX$.
Proposed by Aaron Lin
2012 NIMO Winter Contest p5
In convex hexagon $ABCDEF$, $\angle A \cong \angle B$, $\angle C \cong \angle D$, and $\angle E \cong \angle F$. Prove that the perpendicular bisectors of $\overline{AB}$, $\overline{CD}$, and $\overline{EF}$ pass through a common point.
In convex hexagon $ABCDEF$, $\angle A \cong \angle B$, $\angle C \cong \angle D$, and $\angle E \cong \angle F$. Prove that the perpendicular bisectors of $\overline{AB}$, $\overline{CD}$, and $\overline{EF}$ pass through a common point.
Proposed by Lewis Chen
2013 NIMO Winter Contest p3
Let $ABC$ be a triangle. Prove that there exists a unique point $P$ for which one can find points $D$, $E$ and $F$ such that the quadrilaterals $APBF$, $BPCD$, $CPAE$, $EPFA$, $FPDB$, and $DPEC$ are all parallelograms.
Let $ABC$ be a triangle. Prove that there exists a unique point $P$ for which one can find points $D$, $E$ and $F$ such that the quadrilaterals $APBF$, $BPCD$, $CPAE$, $EPFA$, $FPDB$, and $DPEC$ are all parallelograms.
Proposed by Lewis Chen
In convex hexagon $AXBYCZ$, sides $AX$, $BY$ and $CZ$ are parallel to diagonals $BC$, $XC$ and $XY$, respectively. Prove that $\triangle ABC$ and $\triangle XYZ$ have the same area.
Proposed by Evan Chen
Let $ABC$ be an acute triangle with orthocenter $H$ and let $M$ be the midpoint of $\overline{BC}$. (The orthocenter is the point at the intersection of the three altitudes.) Denote by $\omega_B$ the circle passing through $B$, $H$, and $M$, and denote by $\omega_C$ the circle passing through $C$, $H$, and $M$. Lines $AB$ and $AC$ meet $\omega_B$ and $\omega_C$ again at $P$ and $Q$, respectively. Rays $PH$ and $QH$ meet $\omega_C$ and $\omega_B$ again at $R$ and $S$, respectively. Show that $\triangle BRS$ and $\triangle CRS$ have the same area.
Proposed by Aaron Lin
Let $ABC$ be a triangle and let $Q$ be a point such that $\overline{AB} \perp \overline{QB}$ and $\overline{AC} \perp \overline{QC}$. A circle with center $I$ is inscribed in $\triangle ABC$, and is tangent to $\overline{BC}$, $\overline{CA}$ and $\overline{AB}$ at points $D$, $E$, and $F$, respectively. If ray $QI$ intersects $\overline{EF}$ at $P$, prove that $\overline{DP} \perp \overline{EF}$.
Proposed by Aaron Lin
lasted only these years
2011 NIMO Summer Contest p5
In equilateral triangle $ABC$, the midpoint of $\overline{BC}$ is $M$. If the circumcircle of triangle $MAB$ has area $36\pi$, then find the perimeter of the triangle.
Proposed by Isabella Grabski
2011 NIMO Summer Contest p8
Triangle $ABC$ with $\measuredangle A = 90^\circ$ has incenter $I$. A circle passing through $A$ with center $I$ is drawn, intersecting $\overline{BC}$ at $E$ and $F$ such that $BE < BF$. If $\tfrac{BE}{EF} = \tfrac{2}{3}$, then $\tfrac{CF}{FE} = \tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.
Proposed by Lewis Chen
In triangle $ABC$, $AB = 100$, $BC = 120$, and $CA = 140$. Points $D$ and $F$ lie on $\overline{BC}$ and $\overline{AB}$, respectively, such that $BD = 90$ and $AF = 60$. Point $E$ is an arbitrary point on $\overline{AC}$. Denote the intersection of $\overline{BE}$ and $\overline{CF}$ as $K$, the intersection of $\overline{AD}$ and $\overline{CF}$ as $L$, and the intersection of $\overline{AD}$ and $\overline{BE}$ as $M$. If $[KLM] = [AME] + [BKF] + [CLD]$, where $[X]$ denotes the area of region $X$, compute $CE$.
Proposed by Lewis Chen
2011 NIMO Summer Contest p14
In circle $\theta_1$ with radius $1$, circles $\phi_1, \phi_2, \dots, \phi_8$, with equal radii, are drawn such that for $1 \le i \le 8$, $\phi_i$ is tangent to $\omega_1$, $\phi_{i-1}$, and $\phi_{i+1}$, where $\phi_0 = \phi_8$ and $\phi_1 = \phi_9$. There exists a circle $\omega_2$ such that $\omega_1 \neq \omega_2$ and $\omega_2$ is tangent to $\phi_i$ for $1 \le i \le 8$. The radius of $\omega_2$ can be expressed in the form $a - b\sqrt{c} -d\sqrt{e - \sqrt{f}} + g \sqrt{h - j \sqrt{k}}$ such that $a, b, \dots, k$ are positive integers and the numbers $e, f, k, \gcd(h, j)$ are squarefree. What is $a+b+c+d+e+f+g+h+j+k$.
Proposed by Eugene Chen
2012 NIMO Summer Contest p5In the diagram below, three squares are inscribed in right triangles. Their areas are $A$, $M$, and $N$, as indicated in the diagram. If $M = 5$ and $N = 12$, then $A$ can be expressed as $a + b\sqrt{c}$, where $a$, $b$, and $c$ are positive integers and $c$ is not divisible by the square of any prime. Compute $a + b + c$.
Proposed by Aaron Lin
Points $A$, $B$, and $O$ lie in the plane such that $\measuredangle AOB = 120^\circ$. Circle $\omega_0$ with radius $6$ is constructed tangent to both $\overrightarrow{OA}$ and $\overrightarrow{OB}$. For all $i \ge 1$, circle $\omega_i$ with radius $r_i$ is constructed such that $r_i < r_{i - 1}$ and $\omega_i$ is tangent to $\overrightarrow{OA}$, $\overrightarrow{OB}$, and $\omega_{i - 1}$. If $S = \sum_{i = 1}^{\infty} r_i, $ then $S$ can be expressed as $a\sqrt{b} + c$, where $a, b, c$ are integers and $b$ is not divisible by the square of any prime. Compute $100a + 10b + c$.
Proposed by Aaron Lin
2012 NIMO Summer Contest p15In the diagram below, square $ABCD$ with side length 23 is cut into nine rectangles by two lines parallel to $\overline{AB}$ and two lines parallel to $\overline{BC}$. The areas of four of these rectangles are indicated in the diagram. Compute the largest possible value for the area of the central rectangle.
Proposed by Lewis Chen
2013 NIMO Summer Contest p12
Let $ABC$ and $DEF$ be two triangles, such that $AB=DE=20$, $BC=EF=13$, and $\angle A = \angle D$. If $AC-DF=10$, determine the area of $\triangle ABC$.
Proposed by Lewis Chen
In $\triangle ABC$, $AB = 40$, $BC = 60$, and $CA = 50$. The angle bisector of $\angle A$ intersects the circumcircle of $\triangle ABC$ at $A$ and $P$. Find $BP$.
Proposed by Eugene Chen
2013 NIMO Summer Contest p13In trapezoid $ABCD$, $AD \parallel BC$ and $\angle ABC + \angle CDA = 270^{\circ}$. Compute $AB^2$ given that $AB \cdot \tan(\angle BCD) = 20$ and $CD = 13$.
Proposed by Lewis Chen
2014 NIMO Summer Contest p3
A square and equilateral triangle have the same perimeter. If the triangle has area $16\sqrt3$, what is the area of the square?
Proposed by Evan Chen
2014 NIMO Summer Contest p8Aaron takes a square sheet of paper, with one corner labeled $A$. Point $P$ is chosen at random inside of the square and Aaron folds the paper so that points $A$ and $P$ coincide. He cuts the sheet along the crease and discards the piece containing $A$. Let $p$ be the probability that the remaining piece is a pentagon. Find the integer nearest to $100p$.
Proposed by Aaron Lin
2014 NIMO Summer Contest p14Let $ABC$ be a triangle with circumcenter $O$ and let $X$, $Y$, $Z$ be the midpoints of arcs $BAC$, $ABC$, $ACB$ on its circumcircle. Let $G$ and $I$ denote the centroid of $\triangle XYZ$ and the incenter of $\triangle ABC$.
Given that $AB = 13$, $BC = 14$, $CA = 15$, and $\frac {GO}{GI} = \frac mn$ for relatively prime positive integers $m$ and $n$, compute $100m+n$.
Proposed by Evan Chen
2015 NIMO Summer Contest p5
Let $\triangle ABC$ have $AB=3$, $AC=5$, and $\angle A=90^\circ$. Point $D$ is the foot of the altitude from $A$ to $\overline{BC}$, and $X$ and $Y$ are the feet of the altitudes from $D$ to $\overline{AB}$ and $\overline{AC}$ respectively. If $XY^2$ can be written in the form $\tfrac mn$ where $m$ and $n$ are positive relatively prime integers, what is $100m+n$?
Proposed by David Altizio
2015 NIMO Summer Contest p10Let $ABCD$ be a tetrahedron with $AB=CD=1300$, $BC=AD=1400$, and $CA=BD=1500$. Let $O$ and $I$ be the centers of the circumscribed sphere and inscribed sphere of $ABCD$, respectively. Compute the smallest integer greater than the length of $OI$.
Proposed by Michael Ren
2015 NIMO Summer Contest p13Let $\triangle ABC$ be a triangle with $AB=85$, $BC=125$, $CA=140$, and incircle $\omega$. Let $D$, $E$, $F$ be the points of tangency of $\omega$ with $\overline{BC}$, $\overline{CA}$, $\overline{AB}$ respectively, and furthermore denote by $X$, $Y$, and $Z$ the incenters of $\triangle AEF$, $\triangle BFD$, and $\triangle CDE$, also respectively. Find the circumradius of $\triangle XYZ$.
Proposed by David Altizio
2016 NIMO Summer Contest p10In rectangle $ABCD$, point $M$ is the midpoint of $AB$ and $P$ is a point on side $BC$. The perpendicular bisector of $MP$ intersects side $DA$ at point $X$. Given that $AB = 33$ and $BC = 56$, find the least possible value of $MX$.
Proposed by Michael Tang
Let $ABC$ be a triangle with $AB=17$ and $AC=23$. Let $G$ be the centroid of $ABC$, and let $B_1$ and $C_1$ be on the circumcircle of $ABC$ with $BB_1\parallel AC$ and $CC_1\parallel AB$. Given that $G$ lies on $B_1C_1$, the value of $BC^2$ can be expressed in the form $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Determine $100m+n$.
Proposed by Michael Ren
2017 NIMO Summer Contest p4The square $BCDE$ is inscribed in circle $\omega$ with center $O$. Point $A$ is the reflection of $O$ over $B$. A "hook" is drawn consisting of segment $AB$ and the major arc $\widehat{BE}$ of $\omega$ (passing through $C$ and $D$). Assume $BCDE$ has area $200$. To the nearest integer, what is the length of the hook?
Proposed by Evan Chen
2017 NIMO Summer Contest p10In triangle $ABC$ we have $AB=36$, $BC=48$, $CA=60$. The incircle of $ABC$ is centered at $I$ and touches $AB$, $AC$, $BC$ at $M$, $N$, $D$, respectively. Ray $AI$ meets $BC$ at $K$. The radical axis of the circumcircles of triangles $MAN$ and $KID$ intersects lines $AB$ and $AC$ at $L_1$ and $L_2$, respectively. If $L_1L_2 = x$, compute $x^2$.
Proposed by Evan Chen
2017 NIMO Summer Contest p12Triangle $ABC$ has $AB = 2$, $BC = 3$, $CA = 4$, and circumcenter $O$. If the sum of the areas of triangles $AOB$, $BOC$, and $COA$ is $\tfrac{a\sqrt{b}}{c}$ for positive integers $a$, $b$, $c$, where $\gcd(a, c) = 1$ and $b$ is not divisible by the square of any prime, find $a+b+c$.
Proposed by Michael Tang
April
Let $a,b,c$ be the answers to problems $4$, $5$, and $6$, respectively. In $\triangle ABC$, the measures of $\angle A$, $\angle B$, and $\angle C$ are $a$, $b$, $c$ in degrees, respectively. Let $D$ and $E$ be points on segments $AB$ and $AC$ with $\frac{AD}{BD} = \frac{AE}{CE} = 2013$. A point $P$ is selected in the interior of $\triangle ADE$, with barycentric coordinates $(x,y,z)$ with respect to $\triangle ABC$ (here $x+y+z=1$). Lines $BP$ and $CP$ meet line $DE$ at $B_1$ and $C_1$, respectively. Suppose that the radical axis of the circumcircles of $\triangle PDC_1$ and $\triangle PEB_1$ pass through point $A$. Find $100x$.
Proposed by Evan Chen
Let $ABC$ be a triangle with $AB = 130$, $BC = 140$, $CA = 150$. Let $G$, $H$, $I$, $O$, $N$, $K$, $L$ be the centroid, orthocenter, incenter, circumenter, nine-point center, the symmedian point, and the de Longchamps point. Let $D$, $E$, $F$ be the feet of the altitudes of $A$, $B$, $C$ on the sides $\overline{BC}$, $\overline{CA}$, $\overline{AB}$. Let $X$, $Y$, $Z$ be the $A$, $B$, $C$ excenters and let $U$, $V$, $W$ denote the midpoints of $\overline{IX}$, $\overline{IY}$, $\overline{IZ}$ (i.e. the midpoints of the arcs of $(ABC)$.) Let $R$, $S$, $T$ denote the isogonal conjugates of the midpoints of $\overline{AD}$, $\overline{BE}$, $\overline{CF}$. Let $P$ and $Q$ denote the images of $G$ and $H$ under an inversion around the circumcircle of $ABC$ followed by a dilation at $O$ with factor $\frac 12$, and denote by $M$ the midpoint of $\overline{PQ}$. Then let $J$ be a point such that $JKLM$ is a parallelogram. Find the perimeter of the convex hull of the self-intersecting $17$-gon $LETSTRADEBITCOINS$ to the nearest integer.
(A diagram has been included but may not be to scale.)
source:
No comments:
Post a Comment