geometry problems from Caucasus Mathematical Olympiads
with aops links in the names
with aops links in the names
Caucasus 2015 in English here
In 2016 it did not take place.
Juniors
In the convex quadrilateral $ABCD$, point $K$ is the midpoint of $AB$, point $L$ is the midpoint of $BC$, point $M$ is the midpoint of CD, and point $N$ is the midpoint of $DA$. Let $S$ be a point lying inside the quadrilateral $ABCD$ such that $KS = LS$ and $NS = MS$ .Prove that $\angle KSN = \angle MSL$.
2017 Caucasus MO Juniors p4 / Seniors p3
In an acute traingle $ABC$ with $AB< BC$ let $BH_b$ be its altitude, and let $O$ be the circumcenter. A line through $H_b$ parallel to $CO$ meets $BO$ at $X$. Prove that $X$ and the midpoints of $AB$ and $AC$ are collinear.
A triangle is cut by $3$ cevians from its $3$ vertices into $7$ pieces: $4$ triangles and $3$ quadrilaterals. Determine if it is possible that all $3$ quadrilaterals are inscribed.
By centroid of a quadrilateral $PQRS$ we call a common point of two lines through the midpoints of its opposite sides. Suppose that $ABCDEF$ is a hexagon inscribed into the circle $\Omega$ centered at $O$. Let $AB=DE$, and $BC=EF$. Let $X$, $Y$, and $Z$ be centroids of $ABDE$, $BCEF$; and $CDFA$, respectively. Prove that $O$ is the orthocenter of triangle $XYZ$.
Given a convex quadrilateral $ABCD$ with $\angle BCD=90^\circ$. Let $E$ be the midpoint of $AB$. Prove that $2EC \leq AD+BD$.
Points $A'$ and $B'$ lie inside the parallelogram $ABCD$ and points $C'$ and $D'$ lie outside of it, so that all sides of 8-gon $AA'BB'CC'DD'$ are equal. Prove that $A'$, $B'$, $C'$, $D'$ are concyclic.
In a triangle $ABC$ with $\angle BAC = 90^{\circ}$ let $BL$ be the bisector, $L\in AC$. Let $D$ be a point symmetrical to $A$ with respect to $BL$. Let $M$ be the circumcenter of $ADC$. Prove that $CM$, $DL$, and $AB$ are concurrent.
Let $\omega_1$ and $\omega_2$ be two non-intersecting circles. Let one of its internal tangents touches $\omega_1$ and $\omega_2$ at $A_1$ and $A_2$, respectively, and let one of its external tangents touches $\omega_1$ and $\omega_2$ at $B_1$ and $B_2$, respectively. Prove that if $A_1B_2 = A_2B_1$, then $A_1B_2 \perp A_2B_1$.
A regular triangle $ABC$ is given. Points $K$ and $N$ lie in the segment $AB$, a point $L$ lies in the segment $AC$, and a point $M$ lies in the segment $BC$ so that $CL=AK$, $CM=BN$, $ML=KN$. Prove that $KL \parallel MN$.
In a triangle $ABC$ let $K$ be a point on the median $BM$ such that $CK=CM$. It appears that
$\angle CBM = 2 \angle ABM$. Prove that $BC=MK$.
An acute triangle $ABC$ is given. Let $AD$ be its altitude, let $H$ and $O$ be its orthocenter and its
circumcenter, respectively. Let $K$ be the point on the segment $AH$ with $AK=HD$; let $L$ be the
point on the segment $CD$ with $CL=DB$. Prove that line $KL$ passes through $O$.
In parallelogram $ABCD$, points $E$ and $F$ on segments $AD$ and $CD$ are such that $\angle BCE=\angle BAF$. Points $K$ and $L$ on segments $AD$ and $CD$ are such that $AK=ED$ and $CL=FD$. Prove that $\angle BKD=\angle BLD$.
Point $P$ is chosen on the leg $CB$ of right triangle $ABC$ ($\angle ACB = 90^\circ$). The line $AP$ intersects the circumcircle of $ABC$ at point $Q$. Let $L$ be the midpoint of $PB$. Prove that $QL$ is tangent to a fixed circle independent of the choice of point $P$.
Seniors
2015 Caucasus MO grade X p5
Let $AA_1$ and $CC_1$ be the altitudes of the acute-angled triangle $ABC$. Let $K,L$ and $M$ be the midpoints of the sides $AB,BC$ and $CA$ respectively. Prove that if $\angle C_1MA_1 =\angle ABC$, then $C_1 K = A_1L$.
2015 Caucasus MO grade XI p4
The midpoint of the edge $SA$ of the triangular pyramid of $SABC$ has equal distances from all the vertices of the pyramid. Let $SH$ be the height of the pyramid. Prove that $BA^2 + BH^2 = C A^2 + CH^2$.
Let $AA_1$ and $CC_1$ be the altitudes of the acute-angled triangle $ABC$. Let $K,L$ and $M$ be the midpoints of the sides $AB,BC$ and $CA$ respectively. Prove that if $\angle C_1MA_1 =\angle ABC$, then $C_1 K = A_1L$.
2015 Caucasus MO grade XI p4
The midpoint of the edge $SA$ of the triangular pyramid of $SABC$ has equal distances from all the vertices of the pyramid. Let $SH$ be the height of the pyramid. Prove that $BA^2 + BH^2 = C A^2 + CH^2$.
In 2016 it did not take place.
2017 Caucasus MO Juniors p4 / Seniors p3
In an acute traingle $ABC$ with $AB< BC$ let $BH_b$ be its altitude, and let $O$ be the circumcenter. A line through $H_b$ parallel to $CO$ meets $BO$ at $X$. Prove that $X$ and the midpoints of $AB$ and $AC$ are collinear.
In an acute traingle $ABC$ with $AB< BC$ let $BH_b$ be its altitude, and let $O$ be the circumcenter. A line through $H_b$ parallel to $CO$ meets $BO$ at $X$. Prove that $X$ and the midpoints of $AB$ and $AC$ are collinear.
2018 Caucasus MO Seniors p2
Let $I$ be the incenter of an acute-angled triangle $ABC$. Let $P$, $Q$, $R$ be points on sides $AB$, $BC$, $CA$ respectively, such that $AP=AR$, $BP=BQ$ and $\angle PIQ = \angle BAC$. Prove that $QR \perp AC$.
2018 Caucasus MO Seniors p7
In an acute-angled triangle $ABC$, the altitudes from $A,B,C$ meet the sides of $ABC$ at $A_1$, $B_1$, $C_1$, and meet the circumcircle of $ABC$ at $A_2$, $B_2$, $C_2$, respectively. Line $A_1 C_1$ intersects the circumcircles of triangles $AC_1 C_2$ and $CA_1 A_2$ at points $P$ and $Q$ ($Q\neq A_1$, $P\neq C_1$). Prove that the circle $PQB_1$ touches the line $AC$.
In a triangle $ABC$ let $I$ be the incenter. Prove that the circle passing through $A$ and touching $BI$ at $I$, and the circle passing through $B$ and touching $AI$ at $I$, intersect at a point on the circumcircle of $ABC$.
On sides $BC$, $CA$, $AB$ of a triangle $ABC$ points $K$, $L$, $M$ are chosen, respectively, and a point $P$ is inside $ABC$ is chosen so that $PL\parallel BC$, $PM\parallel CA$, $PK\parallel AB$. Determine if it is possible that each of three trapezoids $AMPL$, $BKPM$, $CLPK$ has an inscribed circle.
Let $\omega_1$ and $\omega_2$ be two non-intersecting circles. Let one of its internal tangents touches $\omega_1$ and $\omega_2$ at $A_1$ and $A_2$, respectively, and let one of its external tangents touches $\omega_1$ and $\omega_2$ at $B_1$ and $B_2$, respectively. Prove that if $A_1B_2 = A_2B_1$, then $A_1B_2 \perp A_2B_1$.
In $\triangle ABC$ with $AB\neq{AC}$ let $M$ be the midpoint of $AB$, let $K$ be the midpoint of the arc $BAC$ in the circumcircle of $\triangle ABC$, and let the perpendicular bisector of $AC$ meet the bisector of $\angle BAC$ at $P$ . Prove that $A, M, K, P$ are concyclic.
source: http://cmo.adygmath.ru/
Let $\omega_1$ and $\omega_2$ be two non-intersecting circles. Let one of its internal tangents touches $\omega_1$ and $\omega_2$ at $A_1$ and $A_2$, respectively, and let one of its external tangents touches $\omega_1$ and $\omega_2$ at $B_1$ and $B_2$, respectively. Prove that if $A_1B_2 = A_2B_1$, then $A_1B_2 \perp A_2B_1$.
In $\triangle ABC$ with $AB\neq{AC}$ let $M$ be the midpoint of $AB$, let $K$ be the midpoint of the arc $BAC$ in the circumcircle of $\triangle ABC$, and let the perpendicular bisector of $AC$ meet the bisector of $\angle BAC$ at $P$ . Prove that $A, M, K, P$ are concyclic.
In an acute triangle $ABC$ let $AH_a$ and $BH_b$ be altitudes. Let $H_aH_b$ intersect the
circumcircle of $ABC$ at $P$ and $Q$. Let $A'$ be the reflection of $A$ in $BC$, and let $B'$ be the
reflection of $B$ in $CA$. Prove that $A', B'$, $P$, $Q$ are concyclic.
A triangle $\Delta$ with sidelengths $a\leq b\leq c$ is given. It appears that it is impossible to construct
a triangle from three segments whose lengths are equal to the altitudes of $\Delta$. Prove that $b^2>ac$.
4 tokens are placed in the plane. If the tokens are now at the vertices of a convex quadrilateral $P$, then
the following move could be performed: choose one of the tokens and shift it in the direction
perpendicular to the diagonal of $P$ not containing this token; while shifting tokens it is prohibited to
get three collinear tokens.
Suppose that initially tokens were at the vertices of a rectangle $\Pi$, and after a number of moves
tokens were at the vertices of one another rectangle $\Pi'$ such that $\Pi'$ is similar to $\Pi$ but not
equal to $\Pi $. Prove that $\Pi$ is a square.
Let $\omega$ is tangent to the sides of an acute angle with vertex $A$ at points $B$ and $C$. Let $D$ be an arbitrary point onn the major arc $BC$ of the circle $\omega$. Points $E$ and $F$ are chosen inside the angle $DAC$ so that quadrilaterals $ABDF$ and $ACED$ are inscribed and the points $A,E,F$ lie on the same straight line. Prove that lines $BE$ and $CF$ intersectat $\omega$.
Let $ABC$ be an acute triangle. Let $P$ be a point on the circle $(ABC)$, and $Q$ be a point on the segment $AC$ such that $AP\perp BC$ and $BQ\perp AC$. Lot $O$ be the circumcenter of triangle $APQ$. Find the angle $OBC$.
source: http://cmo.adygmath.ru/
Very nice!
ReplyDelete