drop down menu

Saudi Arabia TST 2010-11,-13-19,-21 (IMO - BMO - GMO - PreTST) 140p

geometry problems from Saudi Arabian Team Selection Tests (TST) [for Balkan, Gulf, International MO] with aops links in the names 
(only those not in any Shortlist)

Pre-TST  2010-11, 2013-16, 2019  
+ Training Sets 2017, 2019, 2021
(Preselection Tests for Full time training)


In triangle $ABC$ with centroid $G$, let $M \in (AB)$ and $N \in (AC)$ be points on two of its sides. Prove that points $M, G, N$ are collinear if and only if $\frac{MB}{MA}+\frac{NC}{NA}=1$.

Let $AMNB$ be a quadrilateral inscribed in a semicircle of diameter $AB = x$. Denote $AM = a$, $MN = b$, $NB = c$. Prove that $x^3- (a^2 + b^2 + c^2)x -2abc = 0$.

Let $ABCDEFG$ be a regular heptagon. If $AC = m$ and $AD = n$, prove that $AB =\frac{mn}{m+n}$.

Let $a$ be a real number.
1) Prove that there is a triangle with side lengths $\sqrt{a^2-a + 1}$, $\sqrt{a^2+a + 1}$, and $\sqrt{4a^2 + 3}$.
2) Prove that the area of this triangle does not depend on $a$.

Let $ABC$ be a triangle with $AB=AC$ and $\angle BAC = 40^o$. Points $S$ and $T$ lie on the sides $AB$ and $BC$, such that $\angle BAT = \angle BCS = 10^o$. Lines $AT$ and $CS$ meet at $P$. Prove that $BT = 2PT$.

Let $ABCD$ be a rectangle of center $O$, such that $\angle DAC = 60^o$. The angle bisector of $\angle DAC$ meets $DC$ at $S$. Lines $OS$ and $AD$ meet at $L$ and lines $BL$ and $AC$ meet at $M$. Prove that lines $SM$ and $CL$ are parallel.

In the isosceles triangle $ABC$, with $AB = AC$, the angle bisector of $\angle B$ intersects side $AC$ at $B'$. Suppose that $ B B' + B'A = BC$. Find the angles of the triangle.

A Geostationary Earth Orbit is situated directly above the equator and has a period equal to the Earth’s rotational pe­riod. It is at the precise distance of $22,236$ miles above the Earth that a satellite can maintain an orbit with a period of rotation around the Earth exactly equal to $24$ hours. Be­ cause the satellites revolve at the same rotational speed of the Earth, they appear stationary from the Earth surface. That is why most station antennas (satellite dishes) do not need to move once they have been properly aimed at a tar­ get satellite in the sky. In an international project, a total of ten stations were equally spaced on this orbit (at the precise distance of $22,236$ miles above the equator). Given that the radius of the Earth is $3960$ miles, find the exact straight dis­tance between two neighboring stations. Write your answer in the form $a + b\sqrt{c}$, where $a, b, c$ are integers and $c > 0$ is square-free.

Pentagon $ABCDE$ is inscribed in a circle. Distances from point $E$ to lines $AB$ , $BC$ and $CD$ are equal to $a, b$ and $c$, respectively. Find the distance from point $E$ to line $AD$.

Let $ABC$ be a triangle with $\angle A = 90^o$ and let $P$ be a point on the hypotenuse $BC$. Prove that $$\frac{AB^2}{PC}+\frac{AC^2}{PB} \ge \frac{BC^3}{PA^2 + PB \cdot PC}$$

Points $A ,B ,C ,D$ lie on a line in this order. Draw parallel lines $a$ and $b$ through $A$ and $B$, respectively, and parallel lines $c$ and $d$ through $C$ and $D$, respectively, such that their points of intersection are vertices of a square. Prove that the side length of this square does not depend on the length of segment $BC$.

The quadrilateral $ABCD$ has $AD = DC = CB < AB$ and $AB \parallel CD$. Points $E$ and $F$ lie on the sides $CD$ and $BC$ such that $\angle ADE = \angle AEF$. Prove that:
(a) $4CF \le CB$.
(b) If $4CF = CB$, then $AE$ is the angle bisector of $\angle DAF$.

Let $ABC$ be a triangle with medians $m_a$ , $m_b$, $m_c$. Prove that:
(a) There is a triangle with side lengths $m_a$ ,$m_b$, $m_c$.
(b) This triangle is similar to $ABC$ if and only if the squares of the side lengths of triangle $ABC$ form an arithmetical sequence.

Let $P$ be a point in the interior of triangle $ABC$. Lines $AP$, $BP$, $CP$ intersect sides $BC$, $CA$, $AB$ at $L$, $M$, $N$, respec­tively. Prove that$$AP \cdot  BP  \cdot CP \ge 8PL  \cdot PM  \cdot  PN.$$

On a semicircle of diameter $AB$ and center $C$, consider vari­able points $M$ and $N$ such that $MC \perp NC$. The circumcircle of triangle $MNC$ intersects $AB$ for the second time at $P$. Prove that $\frac{|PM-PN|}{PC}$ constant and find its value.

In a triangle $ABC$, let $O$ be the circumcenter, $H$ the ortho­center, and $M$ the midpoint of the segment $AH$. The perpendicular at $M$ onto $OM$ intersects lines $AB$ and $AC$ at $P$ and $Q$, respectively. Prove that $MP = MQ$.



$ABC$ is a triangle, $G$ its centroid and $A',B',C'$ the midpoints of its sides $BC,CA,AB$, respectively. Prove that if the quadrilateral $AC'GB'$ is cyclic then $AB \cdot CC' = AC \cdot BB'$:
$\vartriangle ABC$ is a triangle and $I_b. I_c$ its excenters opposite to $B,C$. Prove that $\vartriangle ABC$ is right at $A$ if and only if its area is equal to $\frac12 AI_b \cdot AI_c$.

$\vartriangle ABC$ is a triangle with $AB < BC, \Gamma$ its circumcircle, $K$ the midpoint of the minor arc $CA$ of the circle $C$ and $T$ a point on $\Gamma$ such that $KT$ is perpendicular to $BC$. If $A',B'$ are the intouch points of the incircle of $\vartriangle ABC$ with the sides $BC,AC$, prove that the lines $AT,BK,A'B'$ are concurrent.

$\vartriangle ABC$ is a triangle, $M$ the midpoint of $BC, D$ the projection of $M$ on $AC$ and $E$ the midppoint of $MD$. Prove that the lines $AE,BD$ are perpendicular if and only if $AB = AC$.

Let $D$ be the midpoint of side $BC$ of triangle $ABC$ and $E$ the midpoint of median $AD$. Line $BE$ intersects side $CA$ at $F$. Prove that the area of quadrilateral $CDEF$ is $\frac{5}{12}$ the area of triangle $ABC$.

Let $ABC$ be an acute triangle with $\angle A <  \angle B  \le \angle C$, and $O$ its circumcenter. The perpendicular bisector of side $AB$ intersects side $AC$ at $D$. The perpendicular bisector of side $AC$ intersects side $AB$ at $E$. Express the angles of triangle $DEO$ in terms of the angles of triangle $ABC$.

Let $ABC$ be a triangle and $I$ its incenter. The line $AI$ intersects the side $BC$ at $D$ and the perpendicular bisector of $BC$ at $E$. Let $J$ be the incenter of triangle $CDE$. Prove that triangle $CIJ$ is isosceles.

Let $\vartriangle ABC$ be an acute triangle, with $\angle A>  \angle B \ge \angle C$. Let $D, E$ and $F$ be the tangency points between the incircle of triangle and sides $BC, CA, AB$, respectively. Let $J$ be a point on $(BD)$, $K$ a point on $(DC)$, $L$ a point on $(EC)$ and $M$ a point on $(FB)$, such that $AF = FM = JD = DK = LE = EA$. Let $P$ be the intersection point between $AJ$ and $KM$ and let $Q$ be the intersection point between $AK$ and $JL$. Prove that $PJKQ$ is cyclic.

Let $ABC$ be a triangle and $D$ a point on the side $BC$. Point $E$ is the symmetric of $D$ with respect to $AB$. Point $F$ is the symmetric of $E$ with respect to $AC$. Point $P$ is the intersection of line $DF$ with line $AC$. Prove that the quadrilateral $AEDP$ is cyclic.
(Malik Talbi)
Let $ABC$ be a triangle and $D$ a point on the side $BC$. The tangent line to the circumcircle of the triangle $ABD$ at the point $D$ intersects the side $AC$ at $E$. The tangent line to the circumcircle of the triangle $ACD$ at the the point $D$ intersects the side $AB$ at $F$. Prove that the point $A$ and the circumcenters of the triangles $ABC$ and $DEF$ are collinear.
(Malik Talbi)
Let $ABC$ be a triangle, $I$ its incenter, and $D$ a point on the arc $BC$ of the circumcircle of $ABC$ not containing $A$. The bisector of the angle $\angle ADB$ intesects the segment $AB$ at $E$. The bisector of the angle $\angle CDA$ intesects the segment $AC$ at $F$. Prove that the points $E, F,I$ are collinear.
(Malik Talbi)
Let $ABC$ be a non isosceles triangle inscribed in a circle $(O)$ and $BE, CF$ are two angle bisectors intersect at $I$ with $E$ belongs to segment $AC$ and $F$ belongs to segment $AB$. Suppose that $BE, CF$ intersect $(O)$ at $M,N$ respectively. The line $d_1$ passes through $M$ and perpendicular to $BM$ intersects $(O)$ at the second point $P,$ the line $d_2$ passes through $N$ and perpendicular to $CN$ intersect $(O)$ at the second point $Q$. Denote $H, K$ are two midpoints of $MP$ and $NQ$ respectively.
1. Prove that triangles $IEF$ and $OKH$ are similar.
2. Suppose that S is the intersection of two lines $d_1$ and $d_2$. Prove that $SO$ is perpendicular to $EF$.

Let $ABC$ be a non isosceles triangle with circumcircle $(O)$ and incircle $(I)$. Denote $(O_1)$ as the circle that external tangent to $(O)$ at $A'$ and also tangent to the lines $AB,AC$ at $A_b,A_c$ respectively. Define the circles $(O_2), (O_3)$ and the points $B', C', B_c , B_a, C_a, C_b$ similarly.
1. Denote J as the radical center of $(O_1), (O_2), (O_3) $and suppose that $JA'$ intersects $(O_1)$ at the second point $X, JB'$ intersects $(O_2)$ at the second point Y , JC' intersects $(O_3)$ at the second point $Z$. Prove that the circle $(X Y Z)$ is tangent to $(O_1), (O_2), (O_3)$.
2. Prove that $AA', BB', CC'$ are concurrent at the point $M$ and $3$ points $I,M,O$ are collinear.

Let $ABC$ be an acute, non isosceles triangle, $AX, BY, CZ$ are the altitudes with $X, Y, Z$ belong to $BC, CA,AB$ respectively. Respectively denote $(O_1), (O_2), (O_3)$ as the circumcircles of triangles $AY Z, BZX, CX Y$ . Suppose that $(K)$ is a circle that internal tangent to $(O_1), (O_2), (O_3)$. Prove that $(K)$ is tangent to circumcircle of triangle $ABC$.

Let $ABC$ be a non isosceles triangle with circumcircle $(O)$ and incircle $(I)$. Denote $(O_1)$ as the circle internal tangent to $(O)$ at $A_1$ and also tangent to segments $AB,AC$ at $A_b,A_c$ respectively. Define the circles $(O_2), (O_3)$ and the points $B_1, C_1, B_c , B_a, C_a, C_b$ similarly.
1. Prove that $AA_1, BB_1, CC_1$ are concurrent at the point $M$ and $3$ points $I,M,O$ are collinear.
2. Prove that the circle $(I)$ is inscribed in the hexagon with $6$ vertices $A_b,A_c , B_c , B_a, C_a, C_b$.

Let $ABCD$ be a convex quadrilateral. Ray $AD$ meets ray $BC$ at $P$. Let $O,O'$ be the circumcenters of triangles $PCD, PAB$, respectively, $H,H'$ be the orthocenters of triangles $PCD, PAB$, respectively. Prove that circumcircle of triangle $DOC$ is tangent to circumcircle of triangle $AO'B$ if and only if circumcircle of triangle $DHC$ is tangent to circumcircle of triangle $AH'B$.

Let $ABC$ be an acute triangle inscribed in circle $(O)$, with orthocenter $H$. Median $AM$ of triangle $ABC$ intersects circle $(O)$ at $A$ and $N$. $AH$ intersects $(O)$ at $A$ and $K$. Three lines $KN, BC$ and line through $H$ and perpendicular to $AN$ intersect each other and form triangle $X Y Z$. Prove that the circumcircle of triangle $X Y Z$ is tangent to $(O)$.

Let $ABC$ be a triangle inscribed in circle $(O)$, with its altitudes $BH_b, CH_c$ intersect at orthocenter $H$ ($H_b \in AC$, $H_c \in  AB$). $H_bH_c$ meets $BC$ at $P$. Let $N$ be the midpoint of $AH, L$ be the orthogonal projection of $O$ on the symmedian with respect to angle $A$ of triangle $ABC$. Prove that $\angle NLP = 90^o$.

Let $ABCDEF$ be a convex hexagon satisfying $AC = DF, CE = FB$ and $EA = BD$. Prove that the lines connecting the midpoints of opposite sides of the hexagon $ABCDEF$ intersect in one point.

Let $ABC$ be a triangle with $A',B',C'$ are midpoints of $BC,CA,AB$ respectively. The circle $(\omega_A)$ of center $A$ has a big enough radius cuts $B'C'$ at $X_1,X_2$. Define circles $(\omega_B), (\omega_C)$ with $Y_1, Y_2,Z_1,Z_2$ similarly. Suppose that these circles have the same radius, prove that $X_1,X_2, Y_1, Y_2,Z_1,Z_2$ are concyclic.

Let $ABC$ be a triangle inscribed in a circle ($\omega$) and $I$ is the incenter. Denote $D,E$ as the intersection of $AI,BI$ with ($\omega$). And $DE$ cuts $AC,BC$ at $F,G$ respectively. Let $P$ be a point such that $PF \parallel AD$ and $PG \parallel  BE$. Suppose that the tangent lines of ($\omega$) at $A,B$ meet at $K$. Prove that three lines $AE,BD,KP$ are concurrent or parallel.

Let $ABC$ be an acute, non isosceles triangle with $O,H$ are circumcenter and orthocenter, respectively. Prove that the nine-point circles of $AHO,BHO,CHO$ has two common points.

Let $ABC$ be a triangle, the circle having $BC$ as diameter cuts $AB,AC$ at $F,E$ respectively. Let $P$ a point on this circle. Let $C',B$' be the projections of $P$ upon the sides $AB,AC$ respectively. Let H be the orthocenter of the triangle $AB'C'$. Show that $\angle EHF = 90^o$.

Let $ABCD$ be a trapezoid with $\angle A = \angle B = 90^o$ and a point $E$ lies on the segment $CD$. Denote $(\omega)$ as incircle of triangle $ABE$ and it is tangent to $AB,AE,BE$ respectively at $P, F,K$. Suppose that $KF$ cuts $BC,AD$ at $M,N$ and $PM,PN$ cut $(\omega)$ at $H, T$. Prove that $PH = PT$.
Consider equilateral triangle $ABC$ and suppose that there exist three distinct points $X, Y,Z$ lie inside triangle $ABC$ such that
i) $AX = BY = CZ$
ii) The triplets of points $(A,X,Z), (B,Y,X), (C,Z,Y )$ are collinear in that order.
Prove that $XY Z$ is an equilateral triangle.

In triangle $ABC, \angle B = 60^o$, $O$ is the circumcenter, and $L$ is the foot of an angle bisector of angle $B$.The circumcirle of triangle $BOL$ meets the circumcircle of $ABC$ at point $D \ne B$. Prove that $BD \perp AC$

Let $ABC$ be a triangle, let $D$ be the touch point of the side $BC$ and the incircle of the triangle $ABC$, and let $J_b$ and $J_c$ be the incentres of the triangles $ABD$ and $ACD$, respectively. Prove that the circumcentre of the triangle $AJ_bJ_c$ lies on the bisector of the angle $BAC$.

Let the bisector of the outside angle of $A$ of triangle $ABC$ and the circumcircle of triangle $ABC$ meet at point $P$. The circle passing through points $A$ and $P$ intersects segments $BP$ and $CP$ at points $E$ and $F$ respectively. Let $AD$ is the  angle bisector of triangle $ABC$ . Prove that $\angle PED = \angle PFD$.

Let $ABC$ be an acute, non-isosceles triangle with $AD$,$BE$, $CF$ are altitudes and $d$ is the tangent line of the circumcircle of triangle $ABC$ at $A$. The line through $H$ and parallel to $EF$ cuts $DE$, $DF$ at $Q, P$ respectively. Prove that $d$ is tangent to the ex-circle respect to vertex $D$ of triangle $DPQ$.

Let $ABC$ be an acute, non isosceles triangle with the orthocenter $H$, circumcenter $O$ and $AD$ is the diameter of $(O)$. Suppose that the circle $(AHD)$ meets the lines $AB, AC$ at $F$, respectively. Denote $J, K$ as orthocenter and nine- point center of $AEF$. Prove that $HJ \parallel  BC$ and $KO = KH$.

Let $ABC$ be an acute, non-isosceles triangle inscribed in (O) and $BB'$, $CC'$ are altitudes. Denote $E, F$ as the intersections of $BB'$, $CC'$ with $(O)$ and $D, P, Q$ are projections of $A$ on $BC$, $CE$, $BF$. Prove that the perpendicular bisectors of $PQ$ bisects two segments $AO$, $BC$.

Let $ABC$ be a triangle with incircle $(I)$, tangent to $BC$, $CA$, $AB$ at $D, E, F$ respectively. On the line $DF$, take points $M, P$ such that $CM  \parallel AB$, $AP \parallel BC$. On the line $DE$, take points $N$, $Q$ such that $BN  \parallel AC$, $AQ  \parallel BC$. Denote $X$ as intersection of $PE$, $QF$ and $K$ as the midpoint of $BC$. Prove that if $AX = IK$ then $\angle BAC \le  60^o$.

Let $ABCD$ be a rectangle with $P$ lies on the segment $AC$. Denote $Q$ as a point on minor arc $PB$ of $(PAB)$ such that $QB = QC$. Denote $R$ as a point on minor arc $PD$ of $(PAD)$ such that $RC = RD$. The lines $CB$, $CD$ meet $(CQR)$ again at $M, N$ respectively. Prove that $BM = DN$.
by Tran Quang Hung
Let $A$ be a point lies outside circle $(O)$ and tangent lines $AB$, $AC$ of $(O)$. Consider points $D, E, M$ on $(O)$ such that $MD = ME$. The line $DE$ cuts $MB$, $MC$ at $R, S$. Take $X \in OB$, $Y  \in OC$ such that $RX, SY \perp DE$. Prove that $XY \perp AM$.

Let $AA_0$ be the altitude of the isosceles triangle $ABC~(AB = AC)$. A circle $\gamma$ centered at the midpoint of $AA_0$ touches $AB$ and $AC$. Let $X$ be an arbitrary point of line $BC$. Prove that the tangents from $X$ to $\gamma$ cut congruent segments on lines $AB$ and $AC$

Let $ABC$ be an non-isosceles triangle with incenter $I$, circumcenter $O$ and a point $D$ on segment $BC $such that $(BID) $cut segments $AB $ at$ E $and $(CID) $cuts segment $AC $at $F$ Circle $(DEF)$ cuts segments $AB$,$AC $again at $M,N$. Let $P$ The intersection of $IB$ and $DE $ , $Q$ The intersection of $IC$and $DF$ . Prove that $EN,FM,PQ $are parallel and the median of vertex $I$in triangle $IPQ$ bisects the arc $BAC$ of $(O)$.

Let $ABC$ be a triangle inscribed in circle $(O)$ with diamter $KL$ passes through the midpoint $M$ of $AB$ such that $L, C$ lie on the different sides respect to $AB$. A circle passes through $M, K $cuts $LC$ at$ P, Q $(point $P$ lies between$ Q, C$). The line $KQ $cuts $(LMQ)$ at $R$. Prove that $ARBP$ is cyclic and$ AB$ is the symmedian of triangle $APR$.

Let $AB$ be a chord of the circle $(O)$. Denote M as the midpoint of the minor arc $AB$. A circle $(O')$ tangent to segment $AB$ and internally tangent to $(O)$. A line passes through $M$, perpendicular to $O'A$, $O'B$ and cuts $AB$ respectively at $C, D$. Prove that $AB = 2CD$.

Three circles $\omega_1,\omega_2,\omega_3$ are tangent to line $l$ at points $A,B,C$ ($B$ lies between $A,C$) and $\omega_2$ is externally tangent to the other two. Let $X,Y$ be the intersection points of $\omega_2$ with the other common external tangent of $\omega_1,\omega_3$. The perpendicular line through $B$ to $l$ meets $\omega_2$ again at $Z$. Prove that the circle with diameter $AC$ touches $ZX,ZY$.

Let $ABC$ be a triangle with circumcenter $O$ and incenter $I$, ex-center in angle $A$ is $J$. Denote $D$ as the tangent point of $(I)$ on $BC$ and the angle bisector of angle $A$ cuts $BC$, $(O)$ respectively at $E, F$. The circle $(DEF )$ meets $(O)$ again at $T$. Prove that $AT$ passes through an intersection of $(J)$ and $(DEF )$.

Let $ABCD$ be a quadrilateral with $\angle A = \angle B = 90^o$, $AB = AD$. Denote $E$ as the midpoint of $AD$, suppose that $CD = BC + AD$, $AD > BC$. Prove that $\angle ADC = 2\angle ABE$.

Let $BC$ be a fixed chord of a circle $\omega$. Let $A$ be a variable point on the major arc $BC$ of $\omega$. Let $H$ be the orthocenter of $ABC$. The points $D, E$ lie on $AB, AC$ such that $H$ is the midpoint of $DE$. $O_A$ is the circumcenter of $ADE$. Prove that as $A$ varies, $O_A$ lies on a fixed circle.

Let $ABC$ be convex quadrilateral and $X$ lying inside it such that $XA \cdot XC^2 = XB \cdot XD^2$ and $\angle AXD +  \angle BXC =  \angle CXD$. Prove that $\angle XAD +  \angle XCD =  \angle XBC + \angle XDC$.

Let $ABC$ be an acute, non-isosceles triangle with circumcenter $O$, incenter $I$ and $(I)$ tangent to $BC$, $CA$, $AB$ at $D, E, F$ respectively. Suppose that $EF$ cuts $(O)$ at $P, Q$. Prove that $(PQD)$ bisects segment $BC$.

Let $ABC$ be an acute, non-isosceles triangle with circumcenter $O$. Tangent lines to $(O)$ at $B,C$ meet at $T$. A line passes through $T$ cuts segments $AB$ at $D$ and cuts ray $CA$ at $E$. Take $M$ as midpoint of $DE$ and suppose that $MA$ cuts $(O)$ again at $K$. Prove that $(MKT)$ is tangent to $(O)$.

Let $ABC$ be a triangle with $AB < AC$ and incircle $(I)$ tangent to $BC$ at $D$. Take $K$ on $AD$ such that $CD = CK$. Suppose that $AD$ cuts $(I)$ at $G$ and $BG$ cuts $CK$ at $L$. Prove that K is the midpoint of $CL$.

Let $ABC$ be a triangle with $AB < AC$ inscribed in $(O)$. Tangent line at $A$ of $(O)$ cuts $BC$ at $D$. Take $H$ as the projection of $A$ on $OD$ and $E,F$ as projections of $H$ on $AB,AC$.Suppose that $EF$ cuts $(O)$ at $R,S$. Prove that $(HRS)$ is tangent to $OD$

Let $ABC$ be an acute, non-isosceles triangle with altitude $AD$ ($D \in BC$), $M$ is the midpoint of $AD$ and $O$ is the circumcenter. Line $AO$ meets $BC$ at $K$ and circle of center $K$, radius $KA$ cuts $AB,AC$ at $E, F$ respectively. Prove that $AO$ bisects $EF$.

Let $ABCD$ be a cyclic quadrilateral with $O$ is circumcenter and $AC$ meets $BD$ at $I$ Suppose that rays $DA,CD$ meet at $E$ and rays $BA,CD$ meet at $F$. The Gauss line of $ABCD$ meets $AB,BC,CD,DA$ at points $M,N,P,Q$ respectively. Prove that the circle of diameter $OI$ is tangent to two circles $(ENQ), (FMP)$

Let $ABC$ be a non-isosceles triangle with altitudes $AD$, $BE$, $CF$ with orthocenter $H$. Suppose that $DF \cap HB = M$, $DE \cap  HC = N$ and $T$ is the circumcenter of triangle $HBC$. Prove that $AT\perp MN$.

Let $ABC$ be triangle with the symmedian point $L$ and circumradius $R$. Construct parallelograms $ ADLE$, $BHLK$, $CILJ$ such that $D,H \in AB$, $K, I \in BC$, $J,E \in  CA$ Suppose that $DE$, $HK$, $IJ$ pairwise intersect at $X, Y,Z$. Prove that inradius of $XYZ$ is $\frac{R}{2}$ .

Let $ABC$ be triangle with $M$ is the midpoint of $BC$ and $X, Y$ are excenters with respect to angle $B,C$. Prove that $MX$, $MY$ intersect $AB$, $AC$ at four points that are vertices of circumscribed quadrilateral.


Balkan BMO TST 
2010 - 11, 2013 - 19

Let $ABC$ be an acute triangle and let $MNPQ$ be a square inscribed in the triangle such that $M ,N \in BC$, $P \in AC$, $Q \in AB$. Prove that $area \, [MNPQ] \le \frac12 area\,  [ABC]$.

Show that in any triangle $ABC$ with $\angle A = 90^o$ the following inequality holds
$$(AB -AC)^2(BC^2 + 4AB \cdot AC)^ 2 < 2BC^6.$$

In quadrilateral $ABCD$, diagonals $AC$ and $BD$ intersect at $O$. Denote by $P, Q, R, S$ the orthogonal projections of $O$ onto $AB$ , $BC$ ,$CD$ , $DA$, respectively. Prove that$$PA \cdot  AB + RC \cdot CD =\frac12 (AD^2 + BC^2)$$if and only if$$QB \cdot  BC + SD \cdot DA = \frac12(AB ^2 + CD^2)$$

Consider a triangle $ABC$ and a point $P$ in its interior. Lines $PA$, $PB$, $PC$ intersect $BC$, $CA$, $AB$ at $A', B', C'$ , respectively. Prove that$$\frac{BA'}{BC}+  \frac{CB'}{CA}+ \frac{AC'}{AB}= \frac32$$if and only if at least two of the triangles $PAB$, $PBC$, $PCA$ have the same area.

Quadrilateral $ABCD$ with perpendicular diagonals $AC$ and $BD$ is inscribed in a circle. Altitude $DE$ in triangle $ABD$ intersects diagonal $AC$ in $F$. Prove that $FB = BC$

Let $ABC$ be a right angled triangle with $\angle A = 90^o$and $BC = a$, $AC = b$, $AB = c$. Let $d$ be a line passing trough the incenter of triangle and intersecting the sides $AB$ and $AC$ in $P$ and $Q$, respectively.
(a) Prove that$$b \cdot \left( \frac{PB}{PA}\right)+ c \cdot \left( \frac{QC}{QA}\right) =a$$
(b) Find the minimum of$$\left( \frac{PB}{PA}\right)^ 2+\left( \frac{QC}{QA}\right)^ 2$$

In an acute triangle $ABC$ the angle bisector $AL$, $L \in BC$, intersects its circumcircle at $N$. Let $K$ and $M$ be the projections of $L$ onto sides $AB$ and $AC$. Prove that triangle $ABC$ and quadrilateral $A K N M$ have equal areas.

Let $ABC$ be a triangle with circumcenter $O$. Points $P$ and $Q$ are interior to sides $CA$ and $AB$, respectively. Circle $\omega$ passes through the midpoints of segments $BP$, $CQ$, $PQ$. Prove that if line $PQ$ is tangent to circle $\omega$, then $OP = OQ$.

Let $ABCD$ be a square of center $O$. The parallel to $AD$ through $O$ intersects $AB$ and $CD$ at $M$ and $N$ and a parallel to $AB$ intersects diagonal $AC$ at $P$. Prove that$$OP^4 + \left(\frac{MN}{2} \right)^4 = MP^2 \cdot NP^2$$

Let $ABCDE$ be a convex pentagon such that $\angle BAC = \angle CAD = \angle DAE$ and $\angle ABC = \angle ACD = \angle ADE$. Diagonals $BD$ and $CE$ meet at $P$. Prove that $AP$ bisects side $CD$.

Consider a triangle $ABC$. Let $A_1$ be the symmetric point of $A$ with respect to the line $BC$, $B_1$ the symmetric point of $B$ with respect to the line $CA$, and $C_1$ the symmetric point of $C$ with respect to the line $AB$. Determine the possible set of angles of triangle $ABC$ for which $A_1B_1C_1$ is equilateral.


$ABCDEF$ is an equiangular hexagon of perimeter $21$. Given that $AB = 3, CD = 4$, and $EF = 5$, compute the area of hexagon $ABCDEF$.
Let $ABC$ be a triangle with incenter $I,$ and let $D,E,F$ be the midpoints of sides $BC, CA, AB$, respectively. Lines $BI$ and $DE$ meet at $P $ and lines $CI$ and $DF$ meet at $Q$. Line $PQ$ meets sides $AB$ and $AC$ at $T$ and $S$, respectively. Prove that $AS = AT$

In triangle $ABC$, $AB = AC = 3$ and $\angle A = 90^o$. Let $M$ be the midpoint of side $BC$. Points $D$ and $E$ lie on sides $AC$ and $AB$ respectively such that $AD > AE$ and $ADME$ is a cyclic quadrilateral. Given that triangle $EMD$ has area $2$, find the length of segment $CD$.

The excircle $\omega_B$ of triangle $ABC$ opposite $B$ touches side $AC$, rays $BA$ and $BC$ at $B_1, C_1$ and $A_1$, respectively. Point $D$ lies on major arc $A_1C_1$ of $\omega_B$. Rays $DA_1$ and $C_1B_1$ meet at $E$. Lines $AB_1$ and $BE$ meet at $F$. Prove that line $FD$ is tangent to $\omega_B$ (at $D$).

$ABCD$ is a cyclic quadrilateral and $\omega$ its circumcircle. The perpendicular line to $AC$ at $D$ intersects $AC$ at $E$ and $\omega$ at F. Denote by $\ell$ the perpendicular line to $BC$ at $F$. The perpendicular line to $\ell$ at A intersects $\ell$ at $G$ and $\omega$ at $H$. Line $GE$ intersects $FH$ at $I$ and $CD$ at $J$. Prove that points $C, F, I$ and $J$ are concyclic

$ABCD$ is a cyclic quadrilateral such that $AB = BC = CA$. Diagonals $AC$ and $BD$ intersect at $E$. Given that $BE = 19$ and $ED = 6$, find the possible values of $AD$.
Let $ABC$ be a triangle with $\angle B \le \angle C$, $I$ its incenter and $D$ the intersection point of line $AI$ with side $BC$. Let $M$ and $N$ be points on sides $BA$ and $CA$, respectively, such that $BM = BD$ and $CN = CD$. The circumcircle of triangle $CMN$ intersects again line $BC$ at $P$. Prove that quadrilateral $DIMP$ is cyclic.

Let $ABCD$ be a parallelogram. A line $\ell$ intersects lines $AB,~ BC,~ CD, ~DA$ at four different points $E,~ F,~ G,~ H,$ respectively. The circumcircles of triangles $AEF$ and $AGH$ intersect again at $P$. The circumcircles of triangles $CEF$ and $CGH$ intersect again at $Q$. Prove that the line $P Q$ bisects the diagonal $BD$.

Circles $\omega_1$ and $\omega_2$ meet at $P$ and $Q$. Segments $AC$ and $BD$ are chords of $\omega_1$ and $\omega_2$ respectively, such that segment $AB$ and ray $CD$ meet at $P$. Ray $BD$ and segment $AC$ meet at $X$. Point $Y$ lies on $\omega_1$ such that $P Y \parallel BD$. Point $Z$ lies on $\omega_2$ such that $P Z \parallel AC$. Prove that points $Q,~ X,~ Y,~ Z$ are collinear.

Let $ABC$ be a triangle. Circle $\Omega$ passes through points $B$ and $C$. Circle $\omega$ is tangent internally to $\Omega$ and also to sides $AB$ and $AC$ at $T,~ P,$ and $Q$, respectively. Let $M$ be midpoint of arc $\widehat{BC}$ (containing T) of $\Omega$. Prove that lines $P Q,~ BC,$ and $MT$ are concurrent.

2015 Saudi Arabia BMO TST 1.3
Let $ABC$ be a triangle, $\Gamma$ its circumcircle, $I$ its incenter, and $\omega$ a tangent circle to the line $AI$ at $I$ and to the side $BC$. Prove that the circles $\Gamma$ and $\omega$ are tangent.
Malik Talbi
2015 Saudi Arabia BMO TST 2.3
Let $ABC$ be a triangle, $H_a, H_b$ and $H_c$ the feet of its altitudes from $A, B$ and $C$, respectively, $T_a, T_b, T_c$ its touchpoints of the incircle with the sides $BC, CA$ and $AB$, respectively. The circumcircles of triangles $AH_bH_c$ and $AT_bT_c$ intersect again at $A'$. The circumcircles of triangles $BH_cH_a$ and $BT_cT_a$ intersect again at $B'$. The circumcircles of triangles $CH_aH_b$ and $CT_aT_b$ intersect again at $C'$. Prove that the points $A',B',C'$ are collinear.
Malik Talbi
2016 Saudi Arabia BMO TST , level 4.1.2
Let $A$ be a point outside the circle $\omega$. Two points $B, C$ lie on $\omega$ such that $AB, AC$ are tangent to $\omega$. Let $D$ be any point on $\omega$ ($D$ is neither $B$ nor $C$) and $M$ the foot of perpendicular from $B$ to $CD$. The line through $D$ and the midpoint of $BM$ meets $\omega$ again at $P$. Prove that $AP \perp CP$

2016 Saudi Arabia BMO TST , level 4.2.2
A circle with center $O$ passes through points $A$ and $C$ and intersects the sides $AB$ and $BC$ of triangle $ABC$ at points $K$ and $N$, respectively. The circumcircles of triangles $ABC$ and $KBN$ meet at distinct points $B$ and $M$. Prove that $\angle OMB = 90^o$.

2016 Saudi Arabia BMO TST , level 4.3.2
Let $ABC$ be a triangle and $I$ its incenter. The point $D$ is on segment $BC$ and the circle $\omega$ is tangent to the circumcirle of triangle $ABC$ but is also tangent to $DC, DA$ at $E, F$, respectively. Prove that $E, F$ and $I$ are collinear.

2016 Saudi Arabia BMO TST , level 4+, 1.2
Let $ABC$ be a triangle with $AB \ne AC$. The incirle of triangle $ABC$ is tangent to $BC, CA, AB$ at $D, E, F$, respectively. The perpendicular line from $D$ to $EF$ intersects $AB$ at $X$. The second intersection point of circumcircles of triangles $AEF$ and $ABC$ is $T$. Prove that $TX \perp T F$

2016 Saudi Arabia BMO TST , level 4+, 2.2  (2008 Iran TST)
Let $I_a$ be the excenter of triangle $ABC$ with respect to $A$. The line $AI_a$ intersects the circumcircle of triangle ABC at $T$. Let $X$ be a point on segment $TI_a$ such that $X I_a^2 = XA  \cdot X T$ The perpendicular line from $X$ to $BC$ intersects $BC$ at $A'$. Define $B'$ and $C'$ in the same way. Prove that $AA',BB'$ and $CC'$ are concurrent.

2016 Saudi Arabia BMO TST , level 4+, 3.2
Let $I$ be the incenter of an acute triangle $ABC$. Assume that $K_1$ is the point such that $AK_1 \perp  BC$ and the circle with center $K_1$ of radius $K_1A$ is internally tangent to the incircle of triangle $ABC$ at $A_1$. The points $B_1, C_1$ are defined similarly.
a) Prove that $AA_1, BB_1, CC_1$ are concurrent at a point $P$.
b) Let $\omega_1,\omega_2,\omega_3$ be the excircles of triangle $ABC$ with respect to $A, B, C$, respectively. The circles $\gamma_1,\gamma_2\gamma_3$ are the reflections of $\omega_1,\omega_2,\omega_3$ with respect to the midpoints of $BC, CA, AB$, respectively. Prove that P is the radical center of $\gamma_1,\gamma_2,\gamma_3$.

Let $ABC$ be an acute triangle with $AT, AS$ respectively are the internal, external angle bisector of $ABC$ and $T, S \in BC$. On the circle with diameter $TS$, take an arbitrary point $P$ that lies inside the triangle ABC. Denote $D, E, F, I$ as the incenter of triangle $PBC, PCA, PAB, ABC$. Prove that four lines $AD, BE, CF$ and $IP$ are concurrent.

Let $ABC$ be a triangle with $A$ is an obtuse angle. Denote $BE$ as the internal angle bisector of triangle $ABC$ with $E \in AC$ and suppose that $\angle AEB = 45^o$. The altitude $AD$ of triangle $ABC$ intersects $BE$ at $F$. Let $O_1, O_2$ be the circumcenter of triangles $FED, EDC$. Suppose that $EO_1, EO_2$ meet $BC$ at $G, H$ respectively. Prove that $\frac{GH}{GB}= \tan \frac{a}{2}$

Let $ABC$ be an acute triangle and $(O)$ be its circumcircle. Denote by $H$ its orthocenter and $I$ the midpoint of $BC$. The lines $BH, CH$ intersect $AC,AB$ at $E, F$ respectively. The circles $(IBF$) and $(ICE)$ meet again at $D$.
a) Prove that $D, I,A$ are collinear and $HD, EF, BC$ are concurrent.
b) Let $L$ be the foot of the angle bisector of $\angle BAC$ on the side $BC$. The circle $(ADL)$ intersects $(O)$ again at $K$ and intersects the line $BC$ at $S$ out of the side $BC$. Suppose that $AK,AS$ intersects the circles $(AEF)$ again at $G, T$ respectively. Prove that $TG = TD$.

Let $ABCD$ be a cyclic quadrilateral and triangles $ACD, BCD$ are acute. Suppose that the lines $AB$ and $CD$ meet at $S$. Denote by $E$ the intersection of $AC, BD$. The circles $(ADE)$ and $(BC E)$ meet again at $F$.
a) Prove that $SF \perp EF.$
b) The point $G$ is taken out side of the quadrilateral $ABCD$ such that triangle $GAB$ and $FDC$ are similar. Prove that $GA+ FB = GB + FA$

Let $ABC$ be an acute, non isosceles with $I$ is its incenter. Denote $D, E$ as tangent points of $(I)$ on $AB,AC$, respectively. The median segments respect to vertex $A$ of triangles $ABE$ and $ACD$ meet$ (I)$ at$ P,Q,$ respectively. Take points $M, N$ on the line $DE$ such that $AM \perp BE$ and $AN \perp  C D$ respectively.
a) Prove that $A$ lies on the radical axis of $(MIP)$ and $(NIQ)$.
b) Suppose that the orthocenter $H$ of triangle $ABC$ lies on $(I)$. Prove that there exists a line which is tangent to three circles of center $A, B, C$ and all pass through $H$.

Let $ABC$ be a triangle with $M, N, P$ as midpoints of the segments $BC, CA,AB$ respectively. Suppose that $I$ is the intersection of angle bisectors of $\angle BPM, \angle MNP$ and $J$ is the intersection of angle bisectors of $\angle CN M, \angle MPN$. Denote $(\omega_1)$ as the circle of center $I$ and tangent to $MP$ at $D$, $(\omega_2)$ as the circle of center $J$ and tangent to $MN$ at $E$.
a) Prove that $DE$ is parallel to $BC$.
b) Prove that the radical axis of two circles $(\omega_1), (\omega_2)$ bisects the segment $DE$.

Let $I $be the incenter of triangle $ABC$and $J$ the excenter of the side $BC$: Let $M$ be the midpoint of $CB$ and $N$ the midpoint of arc $BAC$ of circle $(ABC)$. If $T$ is the symmetric of the point $N$ by the point $A$, prove that the quadrilateral $JMIT$ is cyclic

The triangle $ABC$ ($AB > BC$) is inscribed in the circle $\Omega$. On the sides $AB$ and $BC$, the points $M$ and $N$ are chosen, respectively, so that $AM = CN$, The lines $MN$ and $AC$ intersect at point $K$. Let $P$ be the center of the inscribed circle of triangle $AMK$, and $Q$ the center of the excircle of the triangle $CNK$ tangent to side $CN$. Prove that the midpoint of the arc $ABC$ of the circle $\Omega$ is equidistant from the $P$ and $Q$.

2019 Saudi Arabia BMO TST 3.3
Let $ABCD$ is a trapezoid with $\angle A = \angle B = 90^o$ and let $E$ is a point lying on side $CD$. Let the circle $\omega$ is inscribed to triangle $ABE$ and tangents sides $AB, AE$ and $BE$ at points $P, F$ and $K$ respectively. Let $KF$ intersects segments $BC$ and $AD$ at points $M$ and $N$ respectively, as well as $PM$ and $PN$ intersect $\omega$ at points $H$ and $T$ respectively. Prove that $PH = PT$.

Let $ABC$ be an acute, non-isosceles triangle with $H$ the orthocenter and $M$ the midpoint of $AH$. Denote $O_1$,$O_2$ as the centers of circles pass through $H$ and respectively tangent to $BC$ at $B$, $C$. Let $X$, $Y$ be the ex-centers which respect to angle $H$ in triangles $HMO_1$,$HMO_2$. Prove that $XY$ is parallel to $O_1O_2$.

Let $ABC$ be an acute triangle with $AB < AC$ and inscribed in the circle $(O)$. Denote $I$ as the incenter of $ABC$ and $D$, $E$ as the intersections of $AI$ with $BC$, $(O)$ respectively. Take a point $K$ on $BC$ such that $\angle AIK = 90^o$ and $KA$, $KE$ meet $(O)$ again at M,N respectively. The rays $ND$, $NI$ meet the circle $(O)$ at $Q$,$P$.


IMO TST 2010-11, 2013 - 2019, 2021 

Consider a circle of center $O$ and a chord $AB$ of it (not a diameter). Take a point $T$ on the ray $OB$. The perpendicular at $T$ onto $OB$ meets the chord $AB$ at $C$ and the circle at $D$ and $E$. Denote by $S$ the orthogonal projection of $T$ onto the chord $AB$. Prove that $AS \cdot BC = T E \cdot TD$.

Let $ABC$ be a triangle with $\angle B \ge 2\angle C$. Denote by $D$ the foot of the altitude from $A$ and by $M$ be the midpoint of $BC$. Prove that $DM \ge \frac{AB}{2}$.

The squares $OABC$ and $OA_1B_1C_1$ are situated in the same plane and are directly oriented. Prove that the lines $AA_1$ , $BB_1$, and $CC_1$ are concurrent.

Points $M$ and $N$ are considered in the interior of triangle $ABC$ such that $\angle MAB = \angle NAC$ and $\angle MBA = \angle NBC$. Prove that$$\frac{AM \cdot AN}{AB \cdot AC}+ \frac{BM\cdot BN}{BA \cdot BC}+ \frac{CM  \cdot CN }{CA  \cdot CB}=1$$

Let $ABCD$ be a convex quadrilateral such that $\angle  ABC = \angle ADC =135^o$ and$$AC^2 BD^2=2AB\cdot  BC \cdot  CD\cdot  DA.$$Prove that the diagonals of $ABCD$ are perpendicular.

In triangle $ABC$ the circumcircle has radius $R$ and center $O$ and the incircle has radius $r$ and center $I\ne O$ . Let $G$ denote the centroid of triangle $ABC$. Prove that $IG \perp BC$ if and only if $AB = AC$ or $AB + AC = 3BC$.

Let $I$ be the incenter of a triangle $ABC$ and let $A', B', C'$ be midpoints of sides $BC$, $CA$, $AB$, respectively. If $IA'= IB'= IC'$ , then prove that triangle $ABC$ is equilateral.

Let $ABC$ be a triangle with $AB\ne AC$. Its incircle has center $I$ and touches the side $BC$ at point $D$. Line $AI$ intersects the circumcircle $\omega$ of triangle $ABC$ at $M$ and $DM$ intersects again $\omega$ at $P$. Prove that $\angle API= 90^o$.

In triangle $ABC$, let $I_a$ $,I_b$, $I_c$ be the centers of the excircles tangent to sides $BC$, $CA$, $AB$, respectively. Let $P$ and $Q$ be the tangency points of the excircle of center $I_a$ with lines $AB$ and $AC$. Line $PQ$ intersects $I_aB$ and $I_aC$ at $D$ and $E$. Let $A_1$ be the intersection of $DC$ and $BE$. In an analogous way we define points $B_1$ and $C_1$. Prove that $AA_1$, $BB_1$ , $CC_1$ are concurrent.

Let $ABC$ be a non-isosceles triangle with circumcenter $O$, in­center $I$, and orthocenter $H$. Prove that angle $\angle OIH$ is obtuse.

In acute triangle $ABC$, $\angle A = 20^o$. Prove that the triangle is isosceles if and only if$$\sqrt[3]{a^3 + b^3 + c^3 -3abc} = \min\{b, c\}$$, where $a,b, c$ are the side lengths of triangle $ABC$.


2013 Saudi Arabia IMO TST 1.1
Triangle $ABC$ is inscribed in circle $\omega$. Point $P$ lies inside triangle $ABC$.Lines $AP,BP$ and $CP$ intersect $\omega$ again at points $A_1$, $B_1$ and $C_1$ (other than $A, B, C$), respectively. The tangent lines to $\omega$ at $A_1$ and $B_1$ intersect at $C_2$.The tangent lines to $\omega$ at $B_1$ and $C_1$ intersect at $A_2$. The tangent lines to $\omega$ at $C_1$ and $A_1$ intersect at $B_2$. Prove that the lines $AA_2,BB_2$ and $CC_2$ are concurrent.

2013 Saudi Arabia IMO TST 2.2
Let $ABC$ be an acute triangle, and let $AA_1, BB_1$, and $CC_1$ be its altitudes. Segments $AA_1$ and $B_1C_1$ meet at point $K$. The perpendicular bisector of segment $A_1K$ intersects sides $AB$ and $AC$ at $L$ and $M$, respectively. Prove that points $A,A_1, L$, and $M$ lie on a circle.

2013 Saudi Arabia IMO TST 3.3
Let $ABC$ be an acute triangle, $M$ be the midpoint of $BC$ and $P$ be a point on line segment $AM$. Lines $BP$ and $CP$ meet the circumcircle of $ABC$ again at $X$ and $Y$ , respectively, and sides $AC$ at $D$ and $AB$ at $E$, respectively. Prove that the circumcircles of $AXD$ and $AYE$ have a common point $T \ne A$ on line $AM$.

2014 Saudi Arabia IMO TST 1.3
Let $ABC$ be a triangle and let $P$ be a point on $BC$. Points $M$ and $N$ lie on $AB$ and $AC$, respectively such that $MN$ is not parallel to $BC$ and $AMP N$ is a parallelogram. Line $MN$ meets the circumcircle of $ABC$ at $R$ and $S$. Prove that the circumcircle of triangle $RP S$ is tangent to $BC$.

2014 Saudi Arabia IMO TST 2.1
Let $\Gamma$ be a circle with center $O$ and $AE$ be a diameter. Point $D$ lies on segment $OE$ and point $B$ is the midpoint of one of the arcs $\widehat{AE}$ of $\Gamma$. Construct point $C$ such that $ABCD$ is a parallelogram. Lines $EB$ and $CD$ meet at $F$. Line $OF$ meets the minor arc $\widehat{EB}$ at $I$. Prove that $EI$ bisects $\angle BEC$.

2014 Saudi Arabia IMO TST 3.4
Let $\omega_1$ and $\omega_2$ with center $O_1$ and $O_2$ respectively, meet at points $A$ and $B$. Let $X$ and $Y$ be points on $\omega_1$. Lines $XA$ and $Y A$ meet $\omega_2$ at $Z$ and $W$, respectively, such that $A$ lies between $X$ and $Z$ and between $Y$ and $W$. Let $M$ be the midpoint of $O_1O_2$, $S$ be the midpoint of $XA$ and $T$ be the midpoint of $W A$. Prove that $MS = MT$ if and only if $X,~ Y ,~ Z$ and $W$ are concyclic.

2014 Saudi Arabia IMO TST 4.4
Points $A_1,~ B_1,~ C_1$ lie on the sides $BC,~ AC$ and $AB$ of a triangle $ABC$, respectively, such that $AB_1 -AC_1 = CA_1 -CB_1 = BC_1 -BA_1$. Let $I_A,~ I_B,~ I_C$ be the incenters of triangles $AB_1C_1,~ A_1BC_1$ and $A_1B_1C$ respectively. Prove that the circumcenter of triangle $I_AI_BI_C$, is the incenter of triangle $ABC$.

2015 Saudi Arabia IMO TST 1.2
Let $ABC$ be a triangle with orthocenter $H$. Let $P$ be any point of the plane of the triangle. Let $\Omega$ be the circle with the diameter $AP$ . The circle $\Omega$ cuts $CA$ and $AB$ again at $E$ and $F$ , respectively. The line $PH$ cuts $\Omega$ again at $G$. The tangent lines to $\Omega$ at $E, F$ intersect at $T$. Let $M$ be the midpoint of $BC$ and $L$ be the point on $MG$ such that $AL$ and $MT$ are parallel. Prove that $LA$ and $LH$ are orthogonal.

Lê Phúc Lữ
2015 Saudi Arabia IMO TST 2.1
Let $ABC$ be an acute-angled triangle inscribed in the circle $(O)$, $H$ the foot of the altitude of $ABC$ at $A$ and $P$ a point inside $ABC$ lying on the bisector of $\angle BAC$. The circle of diameter $AP$ cuts $(O)$ again at $G$. Let $L$ be the projection of $P$ on $AH$. Prove that if $GL$ bisects $HP$ then $P$ is the incenter of the triangle $ABC$.
Lê Phúc Lữ
2015 Saudi Arabia IMO TST 3.2
Let $ABC$ be a triangle and $\omega$ its circumcircle. Point $D$ lies on the arc $BC$ (not containing $A$) of $\omega$ and is different from $B, C$ and the midpoint of arc $BC$ . The tangent line to $\omega$ at $D$ intersects lines $BC, CA,AB$ at $A', B',C'$ respectively. Lines $BB'$ and $CC'$ intersect at $E$. Line $AA' $ intersects again circle $\omega$ at $F$. Prove that the three points $D,E,F$ are colinear.
Malik Talbi
2016 Saudi Arabia IMO TST , level 4.1.3
Given two circles $(O_1)$ and $(O_2)$ intersect at $A$ and $B$. Let $d_1$ and $d_2$ be two lines through $A$ and be symmetric with respect to $AB$. The line $d_1$ cuts $(O_1)$ and $(O_2)$ at $G, E$ ($\ne A$), respectively, the line $d_2$ cuts $(O_1)$ and $(O_2)$ at $F, H$ ($\ne A$), respectively, such that $E$ is between $A, G$ and $F$ is between $A, H$. Let $J$ be the intersection of $EH$ and $FG$. The line $BJ$ cuts $(O_1), (O_2)$ at $K, L$ ($\ne B$), respectively. Let $N$ be the intersection of $O_1K$ and $O_2L$. Prove that the circle $(NLK)$ is tangent to $AB$.

2016 Saudi Arabia IMO TST , level 4.2.2
Let $ABC$ be a triangle inscribed in the circle $(O)$ and $P$ is a point inside the triangle $ABC$. Let $D$ be a point on $(O)$ such that $AD \perp AP$. The line $CD$ cuts the perpendicular bisector of $BC$ at $M$. The line $AD$ cuts the line passing through $B$ and is perpendicular to $BP$ at $Q$. Let $N$ be the reflection of $Q$ through $M$. Prove that $CN \perp CP$.

2016 Saudi Arabia IMO TST , level 4.4.1
Let $ABC$ be a triangle whose incircle $(I)$ touches $BC, CA, AB$ at $D, E, F$, respectively. The line passing through $A$ and parallel to $BC$ cuts $DE, DF$ at $M, N$, respectively. The circumcircle of triangle $DMN$ cuts $(I)$ again at $L$.
a) Let $K$ be the intersection of $N E$ and $M F$. Prove that $K$ is the orthocenter of the triangle $DMN$.
b) Prove that $A, K, L$ are collinear.

2016 Saudi Arabia IMO TST , level 4+,  1.3
Let $ABC$ be a triangle inscribed in $(O)$. Two tangents of $(O)$ at $B,C$ meets at $P$. The bisector of angle $BAC $ intersects $(P,PB)$ at point $E$ lying inside triangle $ABC$. Let $M,N$ be the midpoints of arcs $BC$ and $BAC$. Circle with diameter $BC$ intersects line segment $EN$ at $F$. Prove that the orthocenter of triangle $EFM$ lies on $BC$.

2016 Saudi Arabia IMO TST , level 4+,  2.1
Let $ABC$ be a triangle inscribed in the circle $(O)$. The bisector of $\angle BAC$ cuts the circle $(O)$ again at $D$. Let $DE$ be the diameter of $(O)$. Let $G$ be a point on arc $AB$ which does not contain $C$. The lines $GD$ and $BC$ intersect at $F$. Let $H$ be a point on the line $AG$ such that $FG \parallel AE$. Prove that the circumcircle of triangle $HAB$ passes through the orthocenter of triangle $HAC$.

2016 Saudi Arabia IMO TST , level 4+,  4.2  [had typo in the pdf]
Let $ABCDEF$ be a convex hexagon with $AB = CD = EF$, $BC =DE = FA$ and $\angle A+\angle  B = \angle  C +\angle  D = \angle  E +\angle  F$. Prove that $\angle A=\angle C=\angle E$ and $\angle B=\angle D=\angle F$ 

2017 Saudi Arabia IMO TST 1.1
Let $ABC$ be a triangle inscribed in circle $(O),$ with its altitudes $BE, CF$ intersect at orthocenter $H$ ($E \in AC, F \in AB$). Let $M$ be the midpoint of $BC, K$ be the orthogonal projection of $H$ on $AM$. $EF$ intersects $BC$ at $P$. Let $Q$ be the intersection of tangent of $(O)$ which passes through $A$ with $BC, T$ be the reflection of $Q$ through $P$. Prove that $\angle OKT = 90^o$.

2017 Saudi Arabia IMO TST 2.2
Let $ABCD$ be the circumscribed quadrilateral with the incircle $(I)$. The circle $(I)$ touches $AB, BC, C D, DA$ at $M, N, P,Q$ respectively. Let $K$ and $L$ be the circumcenters of the triangles $AMN$ and $APQ$ respectively. The line $KL$ cuts the line $BD$ at $R$. The line $AI$ cuts the line $MQ$ at $J$. Prove that $RA = RJ$.

2017 Saudi Arabia IMO TST 3.2
Let $ABCD$ be a quadrilateral inscribed a circle $(O)$. Assume that $AB$ and $CD$ intersect at $E, AC$ and $BD$ intersect at $K$, and $O$ does not belong to the line $KE$. Let $G$ and $H$ be the midpoints of $AB$ and $CD$ respectively. Let $(I)$ be the circumcircle of the triangle $GKH$. Let $(I)$ and $(O)$ intersect at $M, N$ such that $MGHN$ is convex quadrilateral. Let $P$ be the intersection of $MG$ and $HN,Q$ be the intersection of $MN$ and $GH$.
a) Prove that $IK$ and $OE$ are parallel.
b) Prove that $PK$ is perpendicular to $IQ$.

2018 Saudi Arabia IMO TST 1.3
Let $ABCD$ be a convex quadrilateral inscibed in circle $(O)$ such that $DB = DA + DC$. The point $P$ lies on the ray $AC$ such that $AP = BC$. The point $E$ is on $(O)$ such that $BE \perp AD$. Prove that $DP$ is parallel to the angle bisector of $\angle BEC$.

2018 Saudi Arabia IMO TST 2.2 (Brazilian 2017 P5)
Let $ABC$ be an acute, non isosceles triangle with $M, N, P$ are midpoints of $BC, CA, AB$, respectively. Denote $d_1$ as the line passes through $M$ and perpendicular to the angle bisector of $\angle BAC$, similarly define for $d_2, d_3$. Suppose that $d_2 \cap d_3 = D$, $d_3 \cap d_1 = E,$ $d_1 \cap d_2 = F$. Let $I, H$ be the incenter and orthocenter of triangle $ABC$. Prove that the circumcenter of  triangle $DEF$ is the midpoint of segment $IH$.

2018 Saudi Arabia IMO TST 4.2
Let $ABC$ be an acute-angled triangle inscribed in circle $(O)$. Let $G$ be a point on the small arc $AC$ of $(O)$ and $(K)$ be a circle passing through $A$ and $G$. Bisector of $\angle BAC$ cuts $(K)$ again at $P$. The point $E$ is chosen on $(K)$ such that $AE$ is parallel to $BC$. The line $PK$ meets the perpendicular bisector of $BC$ at $F$. Prove that $\angle EGF = 90^o$.

2019 Saudi Arabia IMO TST 3.3
Let $ABC$ be an acute nonisosceles triangle with incenter $I$ and $(d)$ is an arbitrary line tangent to $(I)$ at $K$. The lines passes through $I$, perpendicular to $IA, IB, IC$ cut $(d)$ at $A_1, B_1,C_1$ respectively. Suppose that $(d)$ cuts $BC, CA, AB$ at $M,N, P$ respectively. The lines through $M,N,P$ and respectively parallel to the internal bisectors of $A, B, C$ in triangle $ABC$ meet each other to define a triange $XYZ$. Prove that three lines $AA_1, BB_1, CC_1$ are concurrent and $IK$ is tangent to the circle $(XY Z)$

Let $ABC$ be a non isosceles triangle with incenter $I$ . The circumcircle of the triangle $ABC$ has radius $R$. Let $AL$ be the external angle bisector of $\angle BAC$ with $L \in BC$. Let $K$ be the point on perpendicular bisector of $BC$ such that $IL \perp IK$. Prove that $OK=3R$.


Gulf  GMO TST 2013 -16, 2018
(did not happen in 2017, 2019)

2013 Saudi Arabia GMO TST 1.4
In acute triangle $ABC$, points $D$ and $E$ are the feet of the perpendiculars from $A$ to $BC$ and $B$ to $CA$, respectively. Segment $AD$ is a diameter of circle $\omega$. Circle $\omega$ intersects sides $AC$ and $AB$ at $F$ and $G$ (other than $A$), respectively. Segment $BE$ intersects segments $GD$ and $GF$ at $X$ and $Y$ respectively. Ray $DY$ intersects side $AB$ at $Z$. Prove that lines $XZ$ and $BC$ are perpendicular

2013 Saudi Arabia GMO TST 2.1
An acute triangle $ABC$ is inscribed in circle $\omega$ centered at $O$. Line $BO$ and side $AC$ meet at $B_1$. Line $CO$ and side $AB$ meet at $C_1$. Line $B_1C_1$ meets circle $\omega$ at $P$ and $Q$. If $AP = AQ$, prove that $AB = AC$.

2013 Saudi Arabia GMO TST 3.2
Find all values of $n$ for which there exists a convex cyclic non-regular polygon with $n$ vertices such that the measures of all its internal angles are equal.

2013 Saudi Arabia GMO TST 3.3
$ABC$ is a triangle, $H$ its orthocenter, $I$ its incenter, $O$ its circumcenter and $\omega$ its circumcircle. Line $CI$ intersects circle $\omega$ at point $D$ different from $C$. Assume that $AB = ID$ and $AH = OH$. Find the angles of triangle $ABC$

2014 Saudi Arabia GMO TST 1.1
Let $ABC$ be a triangle with $\angle A < \angle B \le  \angle C$, $M$ and $N$ the midpoints of sides $CA$ and $AB$, respectively, and $P$ and $Q$ the projections of $B$ and $C$ on the medians $CN$ and $BM$, respectively. Prove that the quadrilateral $MNPQ$ is cyclic

Let $ABC$ be a triangle, $D$ the midpoint of side $BC$ and $E$ the intersection point of the bisector of angle $\angle BAC$ with side $BC$. The perpendicular bisector of $AE$ intersects the bisectors of angles $\angle CBA$ and $\angle CDA$ at $M$ and $N$, respectively. The bisectors of angles $\angle CBA$ and $\angle CDA$ intersect at $P$ . Prove that points $A, M, N, P$ are concyclic.
.
Let $A, B,C$ be colinear points in this order, $\omega$ an arbitrary circle passing through $B$ and $C$, and $l$ an arbitrary line different from $BC$, passing through A and intersecting $\omega$ at $M$ and $N$. The bisectors of the angles $\angle CMB$ and $\angle CNB$ intersect $BC$ at $P$ and $Q$. Prove that $AP\cdot  AQ = AB \cdot  AC$.

Let $ABCDE$ be a cyclic pentagon such that the diagonals $AC$ and $AD$ intersect $BE$ at $P$ and $Q$, respectively, with $BP \cdot QE = PQ^2$. Prove that $BC \cdot DE = CD \cdot PQ$.

Let $ABC$ be a triangle, $I$ its incenter, and $\omega$ a circle of center $I$. Points $A',B', C'$ are on $\omega$ such that rays $IA', IB', IC',$ starting from $I$ intersect perpendicularly sides $BC, CA, AB$, respectively. Prove that lines $AA',  BB', CC'$ are concurrent.

Let $BD$ and $CE$ be altitudes of an arbitrary scalene triangle $ABC$ with orthocenter $H$ and circumcenter $O$. Let $M$ and $N$ be the midpoints of sides $AB$, respectively $AC$, and $P$ the intersection point of lines $MN$ and $DE$. Prove that lines $AP$ and $OH$ are perpendicular.


Liana Topan
Let $ABC$ be a triangle and $G$ its centroid. Let $G_a, G_b$ and $G_c$ be the orthogonal projections of $G$ on sides $BC, CA$, respectively $AB$. If $S_a, S_b$ and $S_c$ are the symmetrical points of $G_a, G_b$, respectively $G_c$ with respect to $G$, prove that $AS_a, BS_b$ and $CS_c$ are concurrent.
 Liana Topan
Let $ABC$ be a triangle, with $AB < AC$, $D$ the foot of the altitude from $A, M$ the midpoint of $BC$, and $B'$ the symmetric of $B$ with respect to $D$. The perpendicular line to $BC$ at $B'$ intersects $AC$ at point $P$ . Prove that if $BP$ and $AM$ are perpendicular then triangle $ABC$ is right-angled.

Liana Topan
Let $(O_1), (O_2)$ be given two circles intersecting at $A$ and $B$. The tangent lines of $(O_1)$ at $A, B$ intersect at $O$. Let $I$ be a point on the circle $(O_1)$ but outside the circle $(O_2)$. The lines $IA, IB$ intersect circle $(O_2)$ at $C, D$. Denote by $M$ the midpoint of $C D$. Prove that $I, M, O$ are collinear.

Let $ABC$ be a triangle whose incircle $(I)$ is tangent to $AB, AC$ at $D, E$ respectively. Denote by $\Delta_b,\Delta_c$ the lines symmetric to the lines $AB, AC$ with respect to $CD, BE$ correspondingly. Suppose that $\Delta_b,\Delta_c$ meet at $K$.
a) Prove that $IK \perp BC$.
b) If $I \in (K DE)$, prove that $BD + C E = BC$.

Let $ABC$ be an acute, non-isosceles triangle which is inscribed in a circle $(O)$. A point $I$ belongs to the segment $BC$. Denote by $H$ and $K$ the projections of $I$ on $AB$ and $AC$, respectively. Suppose that the line $HK$ intersects $(O)$ at $M, N$ ($H$ is between $M, K$ and $K$ is between $H, N$). Prove the following assertions:
a) If $A$ is the center of the circle $(IMN)$, then $BC$ is tangent to $(IMN)$.

b) If $I$ is the midpoint of $BC$, then $BC$ is equal to $4$ times of the distance between the centers of two circles $(ABK)$ and $(ACH)$.

Let $ABC$ be an acute, non-isosceles triangle with the circumcircle $(O)$. Denote $D, E$ as the midpoints of $AB,AC$ respectively. Two circles $(ABE)$ and $(ACD)$ intersect at $K$ differs from $A$. Suppose that the ray $AK$ intersects $(O)$ at $L$. The line $LB$ meets $(ABE)$ at the second point $M$ and the line $LC$ meets $(ACD)$ at the second point $N$.
a) Prove that $M, K, N$ collinear and $MN$ perpendicular to $OL$.
b) Prove that $K$ is the midpoint of $MN$

Let $ABC$ be an acute, non-isosceles triangle which is inscribed in a circle $(O)$. A point $I$ belongs to the segment $BC$. Denote by $H$ and $K$ the projections of $I$ on $AB$ and $AC$, respectively. Suppose that the line $HK $ intersects $(O)$ at $M, N$ ($H$ is between $M, K$ and $K$ is between $H, N$). Let $X, Y$ be the centers of the circles $(ABK),(ACH)$ respectively. Prove the
following assertions:
a) If $I$ is the projection of $A$ on $BC$, then $A$ is the center of circle $(IMN)$.

b) If $XY\parallel BC$, then the orthocenter of $XOY$ is the midpoint of $IO$.

Let $I, O$ be the incenter, circumcenter of triangle $ABC$ and $A_1, B_1, C_1 $be arbitrary points on the segments $AI, BI, CI$ respectively. The perpendicular bisectors of $AA_1, BB_1, CC_1$ intersect each other at $X, Y$ and $Z$. Prove that the circumcenter of triangle $XYZ$ coincides with $O$ if and only if $I$ is the orthocenter of triangle $A_1B_1C_1$

Let $C$ be a point lies outside the circle $(O)$ and $CS, CT$ are tangent lines of $(O)$. Take two points $A, B$ on $(O)$ with $M$ is the midpoint of the minor arc $AB$ such that $A, B, M$ differ from $S, T$. Suppose that $MS, MT$ cut line $AB$ at $E, F$. Take $X \in OS$ and $Y \in OT$ such that $EX, FY$ are perpendicular to $AB$. Prove that $X Y$ and $C M$ are perpendicular.


No comments:

Post a Comment