drop down menu

Bosnia & Herzegovina MO / TST 1996 - 2018 (IMO - EGMO) 46p

geometry problems from Math Olympiad of Bosnia and Herzegovina, named as Team Selection Tests (TST) inside aops,  with aops links in the names                                                             

collected inside aops here


IMO TST 1996 - 2017  


Let $M$ be a point inside quadrilateral $ABCD$ such that $ABMD$ is parallelogram. If $\angle CBM = \angle CDM$ prove that $\angle ACD = \angle BCM$

In isosceles triangle $ABC$ with base side $AB$, on side $BC$ it is given point $M$. Let $O$ be a circumcenter and $S$ incenter of triangle $ABC$. Prove that $$ SM \mid \mid AC \Leftrightarrow OM \perp BS$$

b) Tetrahedron $ABCD$ has three pairs of equal opposing sides. Find length of height of tetrahedron in function od lengths of sides

Angle bisectors of angles by vertices $A$, $B$ and $C$ in triangle $ABC$ intersect opposing sides in points $A_1$, $B_1$ and $C_1$, respectively. Let $M$ be an arbitrary point on one of the lines $A_1B_1$, $B_1C_1$ and $C_1A_1$. Let $M_1$, $M_2$ and $M_3$ be orthogonal projections of point $M$ on lines $BC$, $CA$ and $AB$, respectively. Prove that one of the lines $MM_1$, $MM_2$ and $MM_3$ is equal to sum of other two.

Circle $k$  with radius $r$ touches the line $p$ in point $A$. Let $AB$ be a dimeter of circle and $C$ an arbitrary point of circle distinct from points $A$ and $B$. Let $D$ be a foot of perpendicular from point $C$ to line $AB$. Let $E$ be a point on extension of line $CD$, over point $D$, such that $ED=BC$. Let tangents on circle from point $E$ intersect line $p$ in points $K$ and $N$. Prove that length of $KN$ does not depend from $C$

Let angle bisectors of angles $\angle BAC$ and $\angle ABC$ of triangle $ABC$ intersect sides $BC$ and $AC$ in points $D$ and $E$, respectively. Let points $F$ and $G$ be foots of perpendiculars from point $C$ on lines $AD$ and $BE$, respectively. Prove that $FG \mid \mid AB$

Let $S$ be a point inside triangle $ABC$ and let lines $AS$, $BS$ and $CS$ intersect sides $BC$, $CA$ and $AB$ in points $X$, $Y$ and $Z$, respectively. Prove that $$\frac{BX\cdot CX}{AX^2}+\frac{CY\cdot AY}{BY^2}+\frac{AZ\cdot BZ}{CZ^2}=\frac{R}{r}-1$$ iff $S$ is incenter of $ABC$

It is given triangle $ABC$ such that $\angle ABC = 3 \angle CAB$. On side $AC$ there are two points $M$ and $N$ in order $A - N - M - C$ and $\angle CBM = \angle MBN = \angle NBA$. Let $L$ be an arbitrary point on side $BN$ and $K$ point on $BM$ such that $LK \mid \mid AC$. Prove that lines $AL$, $NK$ and $BC$ are concurrent.

On circle there are points $A$, $B$ and $C$ such that they divide circle in ratio $3:5:7$. Find angles of triangle $ABC$

In plane there  are two circles with radiuses $r_1$ and $r_2$, one outside the other. There are two external common tangents on those circles and one internal common tangent. The internal one intersects external ones in points $A$ and $B$ and touches one of the circles in point $C$. Prove that $AC \cdot BC=r_1\cdot r_2$

Triangle $ABC$ is given in a plane. Draw the bisectors of all three of its angles. Then draw the line that connects the points where the bisectors of angles $ABC$ and $ACB$ meet the opposite sides of the triangle. Through the point of intersection of this line and the bisector of angle $BAC$, draw another line parallel to $BC$. Let this line intersect $AB$ in $M$ and $AC$ in $N$. Prove that $2MN = BM+CN$.

The vertices of the convex quadrilateral $ABCD$ and the intersection point $S$ of its diagonals are integer points in the plane. Let $P$ be the area of $ABCD$ and $P_1$ the area of triangle $ABS$. Prove that $\sqrt{P} \ge \sqrt{P_1}+\frac{\sqrt2}2$


2003 Bosnia and Herzegovina TST P2
Upon sides $AB$ and $BC$ of triangle $ABC$ are constructed squares $ABB_{1}A_{1}$ and $BCC_{1}B_{2}$. Prove that lines $AC_{1}$, $CA_{1}$ and altitude from $B$ to side $AC$ are concurrent.

2003 Bosnia and Herzegovina TST P4
In triangle $ABC$ $AD$ and $BE$ are altitudes. Let $L$ be a point on $ED$ such that $ED$ is orthogonal to $BL$. If $LB^2=LD\cdot LE$ prove that triangle $ABC$ is isosceles.

2004 Bosnia and Herzegovina TST P1
Circle $k$ with center $O$ is touched from inside by two circles in points $S$ and $T,$ respectively. Let those two circles intersect at points $M$ and $N$, such that $N$ is closer to line $ST$. Prove that $OM$ and $MN$ are perpendicular iff $S$, $N$ and $T$ are collinear.

It is given triangle $ABC$ and parallelogram $ASCR$ with diagonal $AC$. Let line constructed through point $B$ parallel with $CS$ intersects line $AS$ and $CR$ in $M$ and $P$, respectively. Let line constructed through point $B$ parallel with $AS$ intersects line $AR$ and $CS$ in $N$ and $Q$, respectively. Prove that lines $RS$, $MN$ and $PQ$ are concurrent.

2005 Bosnia and Herzegovina TST P1
Let $H$ be an orthocenter of an acute triangle $ABC$. Prove that midpoints of $AB$ and $CH$ and intersection point of angle bisectors of $\angle CAH$ and $\angle CBH$ lie on the same line.

On the line which contains diameter $PQ$ of circle $k(S,r)$, point $A$ is chosen outside the circle such that tangent $t$ from point $A$ touches the circle in point $T$. Tangents on circle $k$ in points $P$ and $Q$ are $p$ and $q$, respectively. If $PT \cap q={N}$ and $QT \cap p={M}$, prove that points $A$, $M$ and $N$ are collinear.

It is given a triangle $\triangle ABC$. Determine the locus of center of rectangle inscribed in triangle $ABC$ such that one side of rectangle lies on side $AB$.

Triangle $ABC$ is inscribed in circle with center $O$. Let $P$ be a point on arc $AB$ which does not contain point $C$. Perpendicular from point $P$ on line $BO$ intersects side $AB$ in point $S$, and side $BC$ in $T$. Perpendicular from point $P$ on line $AO$ intersects side $AB$ in point $Q$, and side $AC$ in $R$.
i) Prove that triangle $PQS$ is isosceles
ii) Prove that $\frac{PQ}{QR}=\frac{ST}{PQ}$

Let $ABC$ be a triangle such that length of internal angle bisector from $B$ is equal to $s$. Also, length of external angle bisector from $B$ is equal to $s_1$. Find area of triangle $ABC$ if $\frac{AB}{BC} = k$

Triangle $ABC$ is right angled such that $\angle ACB=90^{\circ}$ and $\frac {AC}{BC} = 2$. Let the line parallel to side $AC$ intersects line segments $AB$ and $BC$ in $M$ and $N$ such that $\frac {CN}{BN} = 2$. Let $O$ be the intersection point of lines $CM$ and $AN$. On segment $ON$ lies point $K$ such that $OM+OK=KN$. Let $T$ be the intersection point of angle bisector of $\angle ABC$ and line from $K$ perpendicular to $AN$. Determine value of  $\angle MTB$.

Prove that in an isosceles triangle  $ \triangle ABC$ with $ AC=BC=b$ following inequality holds $ b> \pi r$, where $ r$ is inradius.

2008 Bosnia and Herzegovina TST P5
Let $ AD$ be height of triangle $ \triangle ABC$ and $ R$ circumradius. Denote by $ E$ and $ F$ feet of perpendiculars from point $ D$ to sides $ AB$ and $ AC$. If $ AD=R\sqrt{2}$, prove that circumcenter of triangle $ \triangle ABC$ lies on line $ EF$.

Denote by $M$ and $N$ feets of perpendiculars from $A$ to angle bisectors of exterior angles at $B$ and $C,$ in triangle $\triangle ABC.$ Prove that the length of segment $MN$ is equal to semiperimeter of triangle $\triangle ABC.$

Line $p$ intersects sides $AB$ and $BC$ of triangle $\triangle ABC$ at points $M$ and $K.$ If area of triangle $\triangle MBK$ is equal to area of quadrilateral $AMKC,$ prove that $\frac{\left|MB\right|+\left|BK\right|}{\left|AM\right|+\left|CA\right|+\left|KC\right|}\geq\frac{1}{3}$

Let $AB$ and $FD$ be chords in circle, which does not intersect and $P$ point on arc $AB$ which does not contain chord $FD$. Lines $PF$ and $PD$ intersect chord $AB$ in $Q$ and $R$. Prove that $\frac{AQ \cdot RB}{QR}$ is constant, while point $P$ moves along the ray $AB$.

Convex quadrilateral is divided by diagonals into four triangles with congruent inscribed circles. Prove that this quadrilateral is rhombus.

In triangle $ABC$ it holds $|BC|= \frac{1}{2}(|AB|+|AC|)$. Let $M$ and $N$ be midpoints of $AB$ and $AC$, and let $I$ be the incenter of $ABC$. Prove that $A, M, I, N$ are concyclic.

In quadrilateral $ABCD$ sides $AD$ and $BC$ aren't parallel. Diagonals $AC$ and $BD$ intersect in $E$. $F$ and $G$ are points on sides $AB$ and $DC$ such $\frac{AF}{FB}=\frac{DG}{GC}=\frac{AD}{BC}$ Prove that if $E, F, G$ are collinear then $ABCD$ is cyclic.

Let $D$ be the midpoint of the arc $B-A-C$ of the circumcircle of $\triangle ABC (AB<AC)$. Let $E$ be the foot of perpendicular from $D$ to $AC$. Prove that $|CE|=\frac{|BA|+|AC|}{2}$.

Given is a triangle $\triangle ABC$ and points $M$ and $K$ on lines $AB$ and $CB$ such that $AM=AC=CK$. Prove that the length of the radius of the circumcircle of triangle $\triangle BKM$ is equal to the lenght $OI$, where $O$ and $I$ are centers of the circumcircle and the incircle of $\triangle ABC$, respectively. Also prove that $OI\perp MK$.

Triangle $ABC$ is right angled at $C$. Lines $AM$ and $BN$ are internal angle bisectors. $AM$ and $BN$ intersect altitude $CH$ at points $P$ and $Q$ respectively. Prove that the line which passes through the midpoints of segments $QN$ and $PM$ is parallel to $AB$.

In triangle $ABC$, $I$ is the incenter. We have chosen points $P,Q,R$ on segments $IA,IB,IC$ respectively such that $IP\cdot IA=IQ \cdot IB=IR\cdot IC$. Prove that the points $I$ and $O$ belong to Euler line of triangle $PQR$ where $O$ is circumcenter of $ABC$.

Let $k$ be the circle and $A$ and $B$ points on circle which are not diametrically opposite. On minor arc $AB$ lies point arbitrary point $C$. Let $D$, $E$ and $F$ be foots of perpendiculars from $C$ on chord $AB$ and tangents of circle $k$ in points $A$ and $B$. Prove that $CD= \sqrt {CE \cdot CF}$

Let $D$ and $E$ be foots of altitudes from $A$ and $B$ of triangle $ABC$, $F$ be intersection point of angle bisector from $C$ with side $AB$, and $O$, $I$ and $H$ be circumcenter, center of inscribed circle and orthocenter of triangle $ABC$, respectively. If $\frac{CF}{AD}+ \frac{CF}{BE}=2$, prove that $OI = IH$.

Let $D$ be an arbitrary point on side $AB$ of triangle $ABC$. Circumcircles of triangles $BCD$ and $ACD$ intersect sides $AC$ and $BC$ at points $E$ and $F$, respectively. Perpendicular bisector of $EF$ cuts $AB$ at point $M$, and line perpendicular to $AB$ at $D$ at point $N$. Lines $AB$ and $EF$ intersect at point $T$, and the second point of intersection of circumcircle of triangle $CMD$ and line $TC$ is $U$. Prove that $NC=NU$

Let $D$, $E$ and $F$ be points in which incircle of triangle $ABC$ touches sides $BC$, $CA$ and $AB$, respectively, and let $I$ be a center of that circle.Furthermore, let  $P$ be a foot of perpendicular from point $I$ to line $AD$, and let $M$ be midpoint of $DE$. If $\{N\}=PM\cap{AC}$, prove that $PN \parallel EF$

Let $ABCD$ be a quadrilateral inscribed in circle $k$. Lines $AB$ and $CD$ intersect at point $E$ such that $AB=BE$. Let $F$ be the intersection point of tangents on circle $k$ in points $B$ and $D$, respectively. If the lines $AB$ and $DF$ are parallel, prove that $A$, $C$ and $F$ are collinear.

Let $k$ be a circumcircle of triangle $ABC$ $(AC<BC)$. Also, let $CL$ be an angle bisector of angle $ACB$ $(L \in AB)$, $M$ be a midpoint of arc $AB$ of circle $k$ containing the point $C$, and let $I$ be an incenter of a triangle $ABC$. Circle $k$ cuts line $MI$ at point $K$ and circle with diameter $CI$ at $H$. If the circumcircle of triangle $CLK$ intersects $AB$ again at $T$, prove that $T$, $H$ and $C$ are collinear.

Incircle of triangle $ ABC$ touches $ AB,AC$ at $ P,Q$. $ BI, CI$ intersect with $ PQ$ at $ K,L$. Prove that circumcircle of $ ILK$ is tangent to incircle of $ ABC$ if and only if $ AB+AC=3BC$

2017 Bosnia and Herzegovina TST P6
Given is an acute triangle $ABC$. $M$ is an arbitrary point at the side $AB$ and $N$ is midpoint of $AC$. The foots of the perpendiculars from $A$ to $MC$ and $MN$ are points $P$ and $Q$. Prove that center of the circumcircle of triangle $PQN$ lies on the fixed line for all points $M$ from the side $AB$.

2018 Bosnia and Herzegovina TST P1
In acute triangle $ABC$ $(AB < AC)$ let $D$, $E$ and $F$ be foots of perpedicular from $A$, $B$ and $C$ to $BC$, $CA$ and $AB$, respectively. Let $P$ and $Q$ be points on line $EF$ such that $DP \perp EF$ and $BQ=CQ$. Prove that $\angle ADP = \angle PBQ$



EGMO TST 2017-19


2017 Bosnia and Herzegovina  EGMO TST P2
It is given triangle $ABC$ and points $P$ and $Q$ on sides $AB$ and $AC$, respectively, such that $PQ\mid\mid BC$. Let $X$ and $Y$ be intersection points of lines $BQ$ and $CP$ with circumcircle $k$ of triangle $APQ$, and $D$ and $E$ intersection points of lines $AX$ and $AY$ with side $BC$. If $2\cdot DE=BC$, prove that circle $k$ contains intersection point of angle bisector of $\angle BAC$ with $BC$ 

2018 Bosnia and Herzegovina  EGMO TST P3
Let $O$ be a circumcenter of acute triangle $ABC$ and let $O_1$ and $O_2$ be circumcenters of triangles $OAB$ and $OAC$, respectively. Circumcircles of triangles $OAB$ and $OAC$ intersect side $BC$ in points $D$ ($D \neq B$) and $E$ ($E \neq C$), respectively. Perpendicular bisector of side $BC$ intersects side $AC$ in point $F$($F \neq A$). Prove that circumcenter of triangle $ADE$ lies on $AC$ iff $F$ lies on line $O_1O_2$

2019 Bosnia and Herzegovina  EGMO TST P3
The circle inscribed in the triangle $ABC$  touches the sides $AB$  and  $AC$ at the points $K$  and $L$ , respectively. The angle bisectors from $B$ and $C$ intersect the altitude of the triangle from the vertice $A$ at the points $Q$  and $R$ , respectively. Prove that one of the points of intersection of the circles circumscribed around the triangles  $BKQ$   and   $CPL$ lies on $BC$.

No comments:

Post a Comment