drop down menu

Brazil 1979 - 2021 levels 2,3 (OBM) 137p

geometry problems from Brazilian Mathematical Olympiads , levevs 2 and 3
with aops links in the names

Olimpíada Brasileira de Matemática (OBM)

 collected inside aops: here


1979 - 2020 level 3
(OBM 2020 took place in 2021)

1979 Brazilian L3 P3
The vertex $C$ of the triangle $ABC$ is allowed to vary along a line parallel to $AB$. Find the locus of the orthocenter.

(i) $ABCD$ is a square with side $1$. $M $ is the midpoint of $AB$, and $N$ is the midpoint of $BC$. The lines $CM$ and $DN$ meet at $I$. Find the area of the triangle $CIN$.
(ii) The midpoints of the sides $AB, BC, CD, DA$ of the parallelogram $ABCD$ are $M, N, P, Q$ respectively. Each midpoint is joined to the two vertices not on its side. Show that the area outside the resulting $8$-pointed star is $2 / 5$ the area of the parallelogram.
(iii) $ABC$ is a triangle with $CA = CB$ and centroid G. Show that the area of $AGB$ is $1 / 3 $ of the area of $ABC$.
(iv) Is (ii) true for all convex quadrilaterals $ABCD$?

1980 Brazilian L3 P3
Given a triangle $ABC$ and a point $P_0$ on the side $AB$. Construct points $P_i, Q_i, R_i $ as follows. $Q_i$ is the foot of the perpendicular from $P_i$ to $BC, R_i$ is the foot of the perpendicular from $Q_i$ to $AC$ and $P_i$ is the foot of the perpendicular from $R_{i-1}$ to $AB$. Show that the points $P_i$ converge to a point $P$ on $AB$ and show how to construct $P$.

1980 Brazilian L3 P4
Given $5$ points of a sphere radius $r$, show that two of the points are a distance $\le r \sqrt2$ apart.

1981 Brazilian L3 P3
Given a sheet of paper and the use of a rule, compass and pencil, show how to draw a straight line that passes through two given points, if the length of the ruler and the maximum opening of the compass are both less than half the distance between the two points. You may not fold the paper.

1981 Brazilian L3 P4
A graph has $100$ points. Given any four points, there is one joined to the other three. Show that one point must be joined to all $99$ other points. What is the smallest number possible of such points (that are joined to all the others)?

The centers of the faces of a cube form a regular octahedron of volume $V$. Through each vertex of the cube we may take the plane perpendicular to the long diagonal from the vertex. These planes also form a regular octahedron. Show that its volume is $27V$.

1982 Brazilian L3 P1
The angles of the triangle $ABC$ satisfy $\angle A / \angle C = \angle B / \angle A = 2$. The incenter is $O. K, L$  are the excenters of the excircles opposite $B$ and $A$ respectively. Show that triangles $ABC$ and $OKL$ are similar.

1982 Brazilian L3 P5
Show how to construct a line segment length $(a^4 + b^4)^{1/4}$ given segments lengths $a$ and $b$.

1982 Brazilian L3 P6
Five spheres of radius $r$ are inside a right circular cone. Four of the spheres lie on the base of the cone. Each touches two of the others and the sloping sides of the cone. The fifth sphere touches each of the other four and also the sloping sides of the cone. Find the volume of the cone.

1983 Brazilian L3 P2
An equilateral triangle $ABC$ has side a. A square is constructed on the outside of each side of the triangle. A right regular pyramid with sloping side $a$ is placed on each square. These pyramids are rotated about the sides of the triangle so that the apex of each pyramid comes to a common point above the triangle. Show that when this has been done, the other vertices of the bases of the pyramids (apart from the vertices of the triangle) form a regular hexagon.

1983 Brazilian L3 P4
Show that it is possible to color each point of a circle red or blue so that no right-angled triangle inscribed in the circle has its vertices all the same color.

1983 Brazilian L3 P6
Show that the maximum number of spheres of radius $1$ that can be placed touching a fixed sphere of radius $1$ so that no pair of spheres has an interior point in common is between $12$ and $14$.

1984 Brazilian L3 P3
Given a regular dodecahedron of side $a$. Take two pairs of opposite faces: $E, E' $ and $F, F'$. For the pair $E, E'$ take the line joining the centers of the faces and take points $A$ and $C$ on the line each a distance $m$ outside one of the faces. Similarly, take $B$ and $D$ on the line joining the centers of $F, F'$ each a distance $m$ outside one of the faces. Show that $ABCD$ is a rectangle and find the ratio of its side lengths.

1984 Brazilian L3 P4
$ABC$ is a triangle with $\angle A = 90^o$. For a point $D$ on the side $BC$, the feet of the perpendiculars to $AB$ and $AC$ are $E$ and$ F$. For which point $D$ is $ EF$ a minimum?

$ABCD$ is any convex quadrilateral. Squares center $E, F, G, H$ are constructed on the outside of the edges $AB, BC, CD$ and $DA$ respectively. Show that $EG$ and $FH$ are equal and perpendicular.

1985 Brazilian L3 P2
Given $n$ points in the plane, show that we can always find three which give an angle $\le \pi / n$.

1985 Brazilian L3 P3
A convex quadrilateral is inscribed in a circle of radius $1$. Show that the its perimeter less the sum of its two diagonals lies between $0$ and $2$.

1986 Brazilian L3 P1
A ball moves endlessly on a circular billiard table. When it hits the edge it is reflected. Show that if it passes through a point on the table three times, then it passes through it infinitely many times.

1986 Brazilian L3 P3
The Poincare plane is a half-plane bounded by a line $R$. The lines are taken to be
(1) the half-lines perpendicular to $R$, and
(2) the semicircles with center on $R$.
Show that given any line $L$ and any point $P$ not on $L$, there are infinitely many lines through $P$ which do not intersect $L$. Show that if $ ABC$ is a triangle, then the sum of its angles lies in the interval $(0, \pi)$.
Given a point $p$ inside a convex polyhedron $P$. Show that there is a face $F$ of $P$ such that the foot of the perpendicular from $p$ to $F$ lies in the interior of $F$.

Given points $A_1 (x_1, y_1, z_1), A_2 (x_2, y_2, z_2), .., A_n (x_n, y_n, z_n)$ let $P (x, y, z)$ be the point which minimizes $\Sigma ( |x - x_i| + |y -y_i| + |z -z_i| )$. Give an example (for each $n > 4$) of points $A_i $ for which the point $P$ lies outside the convex hull of the points $A_i$.

1987 Brazilian L3 P5
$A$ and $B$ wish to divide a cake into two pieces. Each wants the largest piece he can get. The cake is a triangular prism with the triangular faces horizontal. $A$ chooses a point $P$ on the top face. $B$ then chooses a vertical plane through the point $P$ to divide the cake. $B$ chooses which piece to take. Which point $P$ should $A $ choose in order to secure as large a slice as possible?

1988 Brazilian L3 P2
Show that, among all triangles whose vertices are at distances $3,5,7$ respectively from a given point $P$, the ones with largest area have $P$ as orthocenter.

(You can suppose, without demonstration, the existence of a triangle with maximal area in this question.)

1988 Brazilian L3 P4
Two triangles are circumscribed to a circumference. Show that if a circumference containing five of their vertices exists, then it will contain the sixth vertex too.

A figure on a computer screen shows $n$ points on a sphere, no four coplanar. Some pairs of points are joined by segments. Each segment is colored red or blue. For each point there is a key that switches the colors of all segments with that point as endpoint. For every three points there is a sequence of key presses that makes the three segments between them red. Show that it is possible to make all the segments on the screen red. Find the smallest number of key presses that can turn all the segments red, starting from the worst case.

A tetrahedron is such that the center of the its circumscribed sphere is inside the tetrahedron. Show that at least one of its edges has a size larger than or equal to the size of the edge of a regular tetrahedron inscribed in this same sphere.

Show that a convex polyhedron with an odd number of faces has at least one face with an even number of edges.

1990 Brazilian L3 P3
Each face of a tetrahedron is a triangle with sides $a, b,$c and the tetrahedon has circumradius 1. Find $a^2 + b^2 + c^2$.

1990 Brazilian L3 P4
$ABCD$ is a quadrilateral, $E,F,G,H$ are midpoints of $AB,BC,CD,DA$.  Find the point P such that $area (PHAE) = area (PEBF) = area (PFCG) = area (PGDH)$.

1991 Brazilian L3 P2
$P$ is a point inside the triangle $ABC$. The line through $P$ parallel to $AB$ meets $AC$ $A_0$ and $BC$ at $B_0$. Similarly, the line through $P$ parallel to $CA$ meets $AB$ at $A_1$ and $BC$ at $C_1$, and the line through P parallel to BC meets $AB$ at $B_2$ and $AC$ at $C_2$. Find the point $P$ such that $A_0B_0 = A_1C_1 = B_2C_2$.

1991 Brazilian L3 P5
$P_0 = (1,0), P_1 = (1,1), P_2 = (0,1), P_3 = (0,0)$.  $P_{n+4}$ is the midpoint of $P_nP_{n+1}$.
$Q_n$ is the quadrilateral $P_{n}P_{n+1}P_{n+2}P_{n+3}$.  $A_n$ is the interior of $Q_n$.
Find $\cap_{n \geq 0}A_n$.

Given positive real numbers $x_1, x_2, \ldots , x_n$ find the polygon $A_0A_1\ldots A_n$ with $A_iA_{i+1} = x_{i+1}$ and which has greatest area.

Let $ABC$ be a triangle. Find the point $D$ on its side $AC$ and the point $E$ on its side $AB$ such that the area of triangle $ADE$ equals to the area of the quadrilateral $DEBC$, and the segment $DE$ has minimum possible length.

1993 Brazilian L3 P3
Given a circle and its center $O$, a point $A$ inside the circle and a distance $h$, construct a triangle $BAC$ with $\angle BAC = 90^\circ$, $B$ and $C$ on the circle and the altitude from $A$ length $h$.

1993 Brazilian L3 P4
$ABCD$ is a convex quadrilateral with $\angle BAC = 30^\circ$ , $\angle CAD = 20^\circ$ , $\angle ABD = 50^\circ$ , $\angle DBC = 30^\circ$ . If the diagonals intersect at $P$, show that $PC = PD$.

Given any convex polygon, show that there are three consecutive vertices such that the polygon lies inside the circle through them.

1994 Brazilian L3 P6
A triangle has semi-perimeter $s$, circumradius $R$ and inradius $r$. Show that it is right-angled iff $2R = s - r$.

$ABCD$ is a quadrilateral with a circumcircle centre $O$ and an inscribed circle centre $I$. The diagonals intersect at $S$. Show that if two of $O,I,S$  coincide, then it must be a square.

1995 Brazilian L3 P4
A regular tetrahedron has side $L$. What is the smallest $x$ such that the tetrahedron can be passed through a loop of twine of length $x$?
Does there exist a set of $n > 2, n < \infty$ points in the plane such that no three are collinear and the circumcenter of any three points of the set is also in the set?

$ABC$ is acute-angled. $D$ s a variable point on the side BC. $O_1$ is the circumcenter of $ABD$, $O_2$ is the circumcenter of $ACD$, and $O$ is the circumcenter of $AO_1O_2$. Find the locus of $O$.

1997 Brazilian L3 P1
Given $R, r > 0$. Two circles are drawn radius $R$, $r$ which meet in two points. The line joining the two points is a distance $D$ from the center of one circle and a distance $d$ from the center of the other. What is the smallest possible value for $D+d$?

1998 Brazilian L3 P2 (also L2)
Let $ABC$ be a triangle. $D$ is the midpoint of $AB$, $E$ is a point on the side $BC$ such that $BE = 2 EC$ and $\angle ADC = \angle BAE$. Find $\angle BAC$.

Let $ABCDE$ be a regular pentagon. The star $ACEBD$ has area 1. $AC$ and $BE$ meet at $P$, while $BD$ and $CE$ meet at $Q$. Find the area of $APQD$.

1999 Brazilian L3 P6
Given any triangle $ABC$, show how to construct $A'$ on the side $AB$, $B'$ on the side $BC$ and $C'$ on the side $CA$, such that $ABC$ and $A'B'C'$ are similar (with $\angle A = \angle A', \angle B = \angle B', \angle C = \angle C'$) and $A'B'C'$ has the least possible area. 

2000 Brazilian L3 P1 (also L2)
A rectangular piece of paper has top edge $AD$. A line $L$ from $A$ to the bottom edge makes an angle $x$ with the line $AD$. We want to trisect $x$. We take $B$ and $C$ on the vertical ege through $A$ such that $AB = BC$. We then fold the paper so that $C$ goes to a point $C'$ on the line $L$ and $A$ goes to a point $A'$ on the horizontal line through $B$. The fold takes $B$ to $B'$. Show that $AA'$ and $AB'$ are the required trisectors.
Let it be is a wooden unit cube. We cut along every plane which is perpendicular to the segment joining two distinct vertices and bisects it. How many pieces do we get?
 
$ABC$ is a triangle. $E, F$ are points in $AB$, such that $AE = EF = FB$ . $D$ is a point at the line $BC$ such that $ED$ is perpendiculat to $BC$ . $AD$ is perpendicular to $CF$. The angle CFA is the triple of angle BDF. ($3\angle BDF = \angle CFA$). Determine the ratio $\frac{DB}{DC}$.

2001 Brazilian L3 P5 (also L2)  (also here)
An altitude of a convex quadrilateral is a line through the midpoint of a side perpendicular to the opposite side. Show that the four altitudes are concurrent iff the quadrilateral is cyclic.

2002 Brazilian L3 P2
$ABCD$ is a cyclic quadrilateral and $M$ a point on the side $CD$ such that $ADM$ and $ABCM$ have the same area and the same perimeter. Show that two sides of $ABCD$ have the same length.

2002 Brazilian L3 P5
A finite collection of squares has total area $4$. Show that they can be arranged to cover a square of side $1$.

$ABCD$ is a rhombus. Take points $E$, $F$, $G$, $H$ on sides $AB$, $BC$, $CD$, $DA$ respectively so that $EF$ and $GH$ are tangent to the incircle of $ABCD$. Show that $EH$ and $FG$ are parallel.

2003 Brazilian L3 P4 (also L2)
Given a circle and a point $A$ inside the circle, but not at its center. Find points $B$, $C$, $D$ on the circle which maximise the area of the quadrilateral $ABCD$.

Let $ABCD$ be a convex quadrilateral. Prove that the incircles of the triangles $ABC$, $BCD$, $CDA$ and $DAB$ have a point in common if, and only if, $ABCD$ is a rhombus.

Determine all values of $n$ such that it is possible to divide a triangle in $n$ smaller triangles such that there are not three collinear vertices and such that each vertex belongs to the same number of segments.

2005 Brazilian L3 P3
A square is contained in a cube when all of its points are in the faces or in the interior of the cube. Determine the biggest $\ell > 0$ such that there exists a square of side $\ell$ contained in a cube with edge $1$.

2005 Brazilian L3 P5
Let $ABC$ be a triangle with all angles $\leq 120^{\circ}$. Let $F$ be the Fermat point of triangle $ABC$, that is, the interior point of $ABC$ such that $\angle AFB = \angle BFC = \angle CFA = 120^\circ$. For each one of the three triangles $BFC$, $CFA$ and $AFB$, draw its Euler line - that is, the line connecting its circumcenter and its centroid. Prove that these three Euler lines pass through one common point.

Remark: The Fermat point $F$ is also known as the first Fermat point or the first Toricelli point of triangle $ABC$.

by Floor van Lamoen
2006 Brazilian L3 P1
Let $ABC$ be a triangle. The internal bisector of $\angle B$ meets $AC$ in $P$ and $I$ is the incenter of $ABC$. Prove that if $AP+AB = CB$, then $API$ is an isosceles triangle.

Let $n$ be an integer, $n \geq 3$. Let $f(n)$ be the largest number of isosceles triangles whose vertices belong to some set of $n$ points in the plane without three colinear points. Prove that there exists positive real constants $a$ and $b$ such that $an^{2}< f(n) < bn^{2}$ for every integer $n$, $n \geq 3$.

Let $P$ be a convex $2006$-gon. The $1003$ diagonals connecting opposite vertices and the $1003$ lines connecting the midpoints of opposite sides are concurrent, that is, all $2006$ lines have a common point. Prove that the opposite sides of $P$ are parallel and congruent.

Consider $ n$ points in a plane which are vertices of a convex polygon. Prove that the set of the lengths of the sides and the diagonals of the polygon has at least $ \lfloor n/2\rfloor$ elements.

2007 Brazilian L3 P5
Let $ ABCD$ be a convex quadrangle, $ P$ the intersection of lines $ AB$ and $ CD$, $ Q$ the intersection of lines $ AD$ and $ BC$ and $ O$ the intersection of diagonals $ AC$ and $ BD$. Show that if $ \angle POQ = 90^\circ$ then $ PO$ is the bisector of $ \angle AOD$ and $ OQ$ is the bisector of  $ \angle AOB$.

Let $ S$ be a set of $ 6n$ points in a line. Choose randomly $ 4n$ of these points and paint them blue; the other $ 2n$ points are painted green. Prove that there exists a line segment that contains exactly $ 3n$ points from $ S$, $ 2n$ of them blue and $ n$ of them green.

2008 Brazilian L3 P4
Let $ ABCD$ be a cyclic quadrilateral and $ r$ and $ s$ the lines obtained reflecting $ AB$ with respect to the internal bisectors of $ \angle CAD$ and $ \angle CBD$, respectively. If $ P$ is the intersection of $ r$ and $ s$ and $ O$ is the center of the circumscribed circle of $ ABCD$, prove that $ OP$ is perpendicular to $ CD$.
Prove that there exists a positive integer $ n_0$ with the following property: for each integer $ n \geq n_0$ it is possible to partition a cube into $ n$ smaller cubes.
Let $ ABC$ be a triangle and $ O$ its circumcenter. Lines $ AB$ and $ AC$ meet the circumcircle of $ OBC$ again in $ B_1\neq B$ and $ C_1 \neq C$, respectively, lines $ BA$ and $ BC$ meet the circumcircle of $ OAC$ again in $ A_2\neq A$ and $ C_2\neq C$, respectively, and lines $ CA$ and $ CB$ meet the circumcircle of $ OAB$ in $ A_3\neq A$ and $ B_3\neq B$, respectively. Prove that lines $ A_2A_3$, $ B_1B_3$ and $ C_1C_2$ have a common point.

Determine all values of $n$ for which there is a set $S$ with $n$ points, with no 3 collinear, with the following property: it is possible to paint all points of $S$ in such a way that all angles determined by three points in $S$, all of the same color or of three different colors, aren't obtuse. The number of colors available is unlimited.

What is the biggest shadow that a cube of side length $1$ can have, with the sun at its peak?
Note: "The biggest shadow of a figure with the sun at its peak" is understood to be the biggest possible area of the orthogonal projection of the figure on a plane.

2010 Brazilian L3 P4
Let $ABCD$ be a convex quadrilateral, and $M$ and $N$ the midpoints of the sides $CD$ and $AD$, respectively. The lines perpendicular to $AB$ passing through $M$ and to $BC$ passing through $N$ intersect at point $P$. Prove that $P$ is on the diagonal $BD$ if and only if the diagonals $AC$ and $BD$ are perpendicular.

2011 Brazilian L3 P3
Prove that, for all convex pentagons $P_1 P_2 P_3 P_4 P_5$ with area 1, there are indices $i$ and $j$ (assume $P_7 = P_2$ and $P_6 = P_1$) such that: $ \text{Area of} \ \triangle P_i P_{i+1} P_{i+2} \le \frac{5 - \sqrt 5}{10} \le \text{Area of} \ \triangle P_j P_{j+1} P_{j+2}$

2011 Brazilian L3 P5
Let $ABC$ be an acute triangle and $H$ is orthocenter. Let $D$ be the intersection of $BH$ and $AC$ and $E$ be the intersection of $CH$ and $AB$. The circumcircle of $ADE$ cuts the circumcircle of $ABC$ at $F \neq A$. Prove that the angle bisectors of $\angle BFC$ and $\angle BHC$ concur at a point on $BC.$

$ABC$ is a non-isosceles triangle. $T_A$ is the tangency point of incircle of $ABC$ in the side $BC$ (define $T_B$,$T_C$ analogously). $I_A$ is the ex-center relative to the side BC (define $I_B$,$I_C$ analogously). $X_A$ is the mid-point of $I_BI_C$ (define $X_B$,$X_C$ analogously). Show that $X_AT_A$,$X_BT_B$,$X_CT_C$ meet in a common point, colinear with the incenter and circumcenter of $ABC$.

2013 Brazilian L3 P1
Let $\Gamma$ be a circle and $A$ a point outside $\Gamma$. The tangent lines to $\Gamma$ through $A$ touch $\Gamma$ at $B$ and $C$. Let $M$ be the midpoint of $AB$. The segment $MC$ meets $\Gamma$ again at $D$ and the line $AD$ meets $\Gamma$ again at $E$. Given that $AB=a$, $BC=b$, compute $CE$ in terms of $a$ and $b$.

2013 Brazilian L3 P6
The incircle of triangle $ABC$ touches sides $BC, CA$ and $AB$ at points $D, E$ and $F$, respectively. Let $P$ be the intersection of lines $AD$ and $BE$. The reflections of $P$ with respect to $EF, FD$ and $DE$ are $X,Y$ and $Z$, respectively. Prove that lines $AX, BY$ and $CZ$ are concurrent at a point on line $IO$, where $I$ and $O$ are the incenter and circumcenter of triangle $ABC$.

2014 Brazilian L3 P1
Let $ABCD$ be a convex quadrilateral. Diagonals $AC$ and $BD$ meet at point $P$. The inradii of triangles $ABP$, $BCP$, $CDP$ and $DAP$ are equal. Prove that $ABCD$ is a rhombus.

2014 Brazilian L3 P6
Let $ABC$ be a triangle with incenter $I$ and incircle $\omega$. Circle $\omega_A$ is externally tangent to $\omega$ and tangent to sides $AB$ and $AC$ at $A_1$ and $A_2$, respectively. Let $r_A$ be the line $A_1A_2$. Define $r_B$ and $r_C$ in a similar fashion. Lines $r_A$, $r_B$ and $r_C$ determine a triangle $XYZ$. Prove that the incenter of $XYZ$, the circumcenter of $XYZ$ and $I$ are collinear.

2015 Brazilian L3 P1 
Let $\triangle ABC$ be an acute-scalene triangle, and let $N$ be the center of the circle wich pass trough the feet of altitudes. Let $D$ be the intersection of tangents to the circumcircle of $\triangle ABC$ at $B$ and $C$. Prove that $A$, $D$ and $N$ are collinear iff $\measuredangle BAC = 45º$.

2015 Brazilian L3 P6
Let $\triangle ABC$ be a scalene triangle and $X$, $Y$ and $Z$ be points on the lines $BC$, $AC$ and $AB$, respectively, such that $\measuredangle AXB = \measuredangle BYC = \measuredangle CZA$. The circumcircles of $BXZ$ and $CXY$ intersect at $P$. Prove that $P$ is on the circumference which diameter has ends in the ortocenter $H$ and in the baricenter $G$ of $\triangle ABC$.

2016 Brazilian L3 P1
Let $ABC$ be a triangle. $r$ and $s$ are the angle bisectors of $\angle ABC$ and $\angle BCA$, respectively. The points $E$ in $r$ and $D$ in $s$ are such that $AD \| BE$ and $AE \| CD$. The lines $BD$ and $CE$ cut each other at $F$. $I$ is the incenter of $ABC$. Show that if $A,F,I$ are collinear, then $AB=AC$.

2016 Brazilian L3 P6
Lei it \(ABCD\) be a non-cyclical, convex quadrilateral, with no parallel sides. The lines \(AB\) and \(CD\) meet in \(E\). Let it \(M \not= E\) be the intersection of circumcircles of \(ADE\) and \(BCE\). The internal angle bisectors of \(ABCD\) form an convex, cyclical quadrilateral with circumcenter \(I\). The external angle bisectors of \(ABCD\) form an convex, cyclical quadrilateral with circumcenter \(J\). Show that \(I,J,M\) are collinear.

2017 Brazilian L3 P3
 A quadrilateral $ABCD$ has the incircle $\omega$ and is such that the semi-lines $AB$ and $DC$ intersect at point $P$ and the semi-lines $AD$ and $BC$ intersect at point $Q$. The lines $AC$ and $PQ$ intersect at point $R$. Let $T$ be the point of $\omega$ closest from line $PQ$. Prove that the line $RT$ passes through the incenter of triangle $PQC$.

2017 Brazilian L3 P5
In triangle $ABC$, let $r_A$ be the line that passes through the midpoint of $BC$ and is perpendicular to the internal bisector of $\angle{BAC}$. Define $r_B$ and $r_C$ similarly. Let $H$ and $I$ be the orthocenter and incenter of $ABC$, respectively. Suppose that the three lines $r_A$, $r_B$, $r_C$ define a triangle. Prove that the circumcenter of this triangle is the midpoint of $HI$.

2018 Brazilian L3 P1
We say that a polygon $P$ is inscribed in another polygon $Q$ when all vertices of $P$ belong to perimeter of $Q$. We also say in this case that $Q$ is circumscribed to  $P$. Given a triangle $T$, let $l$ be the maximum value of the side of a square inscribed in $T$ and $L$ be the minimum value of the side of a square circumscribed to $T$. Prove that for every triangle $T$ the inequality $L/l \ge 2$ holds and find all the triangles $T$ for which the equality occurs.

2018 Brazilian L3 P6
Consider $4n$ points in the plane, with no three points collinear. Using these points as vertices, we form $\binom{4n}{3}$ triangles. Show that there exists a point $X$ of the plane that belongs to the interior of at least $2n^3$ of these triangles.
2019 Brazilian L3 P1
Let $\omega_1$ and $\omega_2$ be two circles with centers $C_1$ and $C_2$, respectively, which intersect at two points $P$ and $Q$. Suppose that the circumcircle of triangle $PC_1C_2$ intersects $\omega_1$ at $A \neq P$ and $\omega_2$ at $B \neq P$. Suppose further that $Q$ is inside the triangle $PAB$. Show that $Q$ is the incenter of triangle $PAB$.

2019 Brazilian L3 P6
Let $A_1A_2A_3A_4A_5$ be a convex, cyclic pentagon with $\angle A_i + \angle A_{i+1} >180^{\circ}$ for all $i \in \{1,2,3,4,5\}$ (all indices modulo $5$ in the problem). Define $B_i$ as the intersection of lines $A_{i-1}A_i$ and $A_{i+1}A_{i+2}$, forming a star. The circumcircles of triangles $A_{i-1}B_{i-1}A_i$ and $A_iB_iA_{i+1}$ meet again at $C_i \neq A_i$, and the circumcircles of triangles $B_{i-1}A_iB_i$ and $B_iA_{i+1}B_{i+1}$ meet again at $D_i \neq B_i$. Prove that the ten lines $A_iC_i, B_iD_i$, $i \in \{1,2,3,4,5\}$, have a common point.

Let $r_A,r_B,r_C$ rays from point $P$. Define circles $w_A,w_B,w_C$ with centers $X,Y,Z$ such that $w_a$ is tangent to $r_B,r_C , w_B$ is tangent to $r_A, r_C$ and $w_C$ is tangent to $r_A,r_B$. Suppose $P$ lies inside triangle $XYZ$, and let $s_A,s_B,s_C$ be the internal tangents to circles $w_B$ and $w_C$; $w_A$ and $w_C$; $w_A$ and $w_B$ that do not contain rays $r_A,r_B,r_C$ respectively. Prove that $s_A, s_B, s_C$ concur at a point $Q$, and also that $P$ and $Q$ are isotomic conjugates.

PS: The rays can be lines and the problem is still true.

Let $ABC$ be a triangle. The ex-circles touch sides $BC, CA$ and $AB$ at points $U, V$ and $W$, respectively. Be $r_u$ a straight line that passes through $U$ and is perpendicular to $BC$, $r_v$ the straight line that passes through $V$ and is perpendicular to $AC$ and $r_w$ the straight line that passes through W and is perpendicular to $AB$. Prove that the lines $r_u$, $r_v$ and $r_w$ pass through the same point.

Let \(ABCD\) be a convex quadrilateral in the plane and let \(O_{A}, O_{B}, O_{C}\) and \(O_{D}\) be the circumcenters of the triangles \(BCD, CDA, DAB\) and \(ABC\), respectively. Suppose these four circumcenters are distinct points. Prove that these points are not on a same circle.

Let \(n \geq 5\) be integer. The convex polygon \(P = A_{1} A_{2} \ldots A_{n}\) is bicentric, that is, it has an inscribed and circumscribed circle. Set \(A_{i+n}=A_{i}\) to every integer \(i\) (that is, all indices are taken modulo \(n\)). Suppose that for all \(i, 1 \leq i \leq n\), the rays \(A_{i-1} A_{i}\) and \(A_{i+2} A_{i+1}\) meet at the point \(B_{i}\). Let \(\omega_{i}\) be the circumcircle of \(B_{i} A_{i} A_{i+1}\). Prove that there is a circle tangent to all \(n\) circles \(\omega_{i}\), \(1 \leq i \leq n\).


1998 - 2020 level 2

Let $ABC$ be a triangle. $D$ is the midpoint of $AB$, $E$ is a point on the side $BC$ such that $BE = 2 EC$ and $\angle ADC = \angle BAE$. Find $\angle BAC$.

1999 Brazilian L2 P1 (also L3)
Let $ABCDE$ be a regular pentagon. The star $ACEBD$ has area 1. $AC$ and $BE$ meet at $P$, while $BD$ and $CE$ meet at $Q$. Find the area of $APQD$. 

A rectangular piece of paper has top edge $AD$. A line $L$ from $A$ to the bottom edge makes an angle $x$ with the line $AD$. We want to trisect $x$. We take $B$ and $C$ on the vertical ege through $A$ such that $AB = BC$. We then fold the paper so that $C$ goes to a point $C'$ on the line $L$ and $A$ goes to a point $A'$ on the horizontal line through $B$. The fold takes $B$ to $B'$. Show that $AA'$ and $AB'$ are the required trisectors.


A sheet of rectangular $ABCD$ paper, of area $1$, is folded along its diagonal $AC$ and then unfolded, then it is bent so that vertex $A$ coincides with vertex $C$ and then
unfolded, leaving the crease $MN$, as shown below.
a) Show that the quadrilateral $AMCN$ is a rhombus.
b) If the diagonal $AC$ is twice the width $AD$, what is the area of ​​the diamond $AMCN$?
Given a positive integer $h$, show that there are a finite number of triangles with integer sides $a, b, c$ and altitude relative to side $c$ equal to $h$ .

2001 Brazilian L2 P6 (also L3) (also here)
An altitude of a convex quadrilateral is a line through the midpoint of a side perpendicular to the opposite side. Show that the four altitudes are concurrent iff the quadrilateral is cyclic.

2002 Brazilian L2 P1
Let $XYZ$ be a  right triangle of  area $1$ m$^2$ . Consider the triangle $X'Y'Z'$ such that $X'$ is the symmetric of X wrt side $YZ$, $Y'$ is the symmetric of $Y$ wrt side $XZ$ and $Z' $ is the symmetric  of $Z$  wrt side $XY$. Calculate the area of the triangle $X'Y'Z'$.

2002 Brazilian L2 P5
Let $ABC$ be a triangle inscribed in a circle of center $O$ and $P$  be a point on the arc $AB$, that does not contain $C$. The perpendicular drawn fom $P$ on line $BO$ intersects $AB$ at $S$ and $BC$ at $T$. The perpendicular drawn from $P$ on line $AO$ intersects $AB$ at $Q$ and $AC$ at $R$. Prove that:
a) $PQS$ is an isosceles triangle
b) $PQ^2=QR= ST$

2003 Brazilian L2 P3
The triangle $ABC$ is inscribed in the circle $S$ and $AB <AC$. The line containing $A$ and is perpendicular to $BC$ meets $S$ in $P$ ($P \ne A$). Point $X$ is on the segment $AC$ and the line $BX$ intersects $S$ in $Q$ ($Q \ne B$). Show that $BX = CX$ if, and only if, $PQ$ is a diameter of $S$.

2003 Brazilian L2 P5 (also L3)
Given a circle and a point $A$ inside the circle, but not at its center. Find points $B$, $C$, $D$ on the circle which maximise the area of the quadrilateral $ABCD$.

2004 Brazilian L2 P1
In the figure, $ABC$ and $DAE$ are isosceles triangles ($AB = AC = AD = DE$) and the angles $BAC$ and $ADE$ have measures $36^o$.
a) Using geometric properties, calculate the measure of angle $\angle EDC$.
b) Knowing that $BC = 2$, calculate the length of segment $DC$.
c) Calculate the length of segment $AC$ .
Let $D$ be the midpoint of the hypotenuse $AB$ of a right triangle $ABC$. Let $O_1$ and $O_2$ be the circumcenters of the $ADC$ and $DBC$ triangles, respectively.
a) Prove that $\angle O_1DO_2$ is right.
b) Prove that $AB$ is tangent to the circle of diameter $O_1O_2$ . .

2005 Brazilian L2 P2
In the right triangle $ABC$, the perpendicular sides $AB$ and $BC$ have lengths $3$ cm and $4$ cm, respectively. Let $M$ be the midpoint of the side $AC$ and let $D$ be a point, distinct from $A$, such that $BM = MD$ and $AB = BD$.
a) Prove that $BM$ is perpendicular to $AD$.
b) Calculate the area of the quadrilateral $ABDC$.

2005 Brazilian L2 P6
The angle $B$ of a  triangle $ABC$ is $120^o$. Let $M$ be a point on the side $AC$ and $K$ a point on the extension of the side $AB$, such that $BM$ is the internal bisector of the angle $\angle ABC$ and $CK$ is the external bisector corresponding to the angle $\angle ACB$ . The segment $MK$ intersects $BC$ at point $P$. Prove that $\angle APM = 30^o$.

Among the $5$-sided polygons, as many vertices as possible collinear , that is, belonging to a single line, is three, as shown below. What is the largest number of collinear vertices a $12$-sided polygon can have?

Attention: in addition to drawing a $12$-sided polygon with the maximum number of vertices collinear,remember to show that there is no other $12$-sided polygon with more vertices collinear than this one.

2006 Brazilian L2 P5
Let $ABC$ be an acutangle triangle and let $H$ be the orthocenter. Let $M, N, R$ be the midpoints of $AB, BC, AH$, respectively. Determine the measure of $\angle MNR$ if $\angle ABC=70^o$.

2007 Brazilian L2 P1
Let $ABC$ be a triangle with circumcenter $O$. Let $P$ be the intersection of straight lines $BO$ and $AC$ and $\omega$ be the circumcircle of triangle  $AOP$. Suppose that $BO = AP$ and that the measure of the arc $OP$ in $\omega$, that does not contain $A$, is $40^o$. Determine the measure of the angle $\angle OBC$.
 
2007 Brazilian L2 P5
Let $ABC$ be an right isosceles triangle. Let $K ,M$ be points on hypotenuse $AB$, with K between $A$ and $M$, with  $\angle  KCM = 45^o$. Prove that $AK^2 + MB^2 = KM^2$.

Let $P$ be a convex pentagon with all sides equal. Prove that if two of the angles of $P$ add to $180^o$, then it is possible to cover the plane with $P$, without overlaps.

Let $ABC$ be an acutangle triangle and $O, H$ its circumcenter, orthocenter, respectively. If  $\frac{AB}{\sqrt2}=BH=OB$, calculate the angles of the triangle $ABC$ .

2009 Brazilian L2 P2 (INMO 89)
Let $ A$ be one of the two points of intersection of two circles with centers $ X, Y$ respectively.The tangents at $ A$ to the two circles meet the circles again at $ B, C$. Let a point $ P$ be located so that $ PXAY$ is a parallelogram. Show that $ P$ is also the circumcenter of triangle $ ABC$.

An ant walks on the plane as follows: initially, it walks $1$ cm in any direction. After, at each step, it changes the trajectory direction by $60^o$ left or right and walks $1$ cm in that direction. It is possible that it returns to the point from which it started in
(a) $2008$ steps?
(b) $2009$ steps?

2009 Brazilian L2 P6 (also L3)
Let $ ABC$ be a triangle and $ O$ its circumcenter. Lines $ AB$ and $ AC$ meet the circumcircle of $ OBC$ again in $ B_1\neq B$ and $ C_1 \neq C$, respectively, lines $ BA$ and $ BC$ meet the circumcircle of $ OAC$ again in $ A_2\neq A$ and $ C_2\neq C$, respectively, and lines $ CA$ and $ CB$ meet the circumcircle of $ OAB$ in $ A_3\neq A$ and $ B_3\neq B$, respectively. Prove that lines $ A_2A_3$, $ B_1B_3$ and $ C_1C_2$ have a common point.

2010 Brazilian L2 P2
Let $ABCD$ be a parallelogram and $\omega$ be  the circumcircle of the triangle $ABD$. Let $E ,F$ be the intersections of $\omega$  with lines $BC ,CD$ respectively . Prove that the circumcenter of the triangle $CEF$ lies on  $\omega$.

The diagonals of an cyclic quadrilateral $ABCD$ intersect at $O$. The circumcircles of triangle $AOB$ and $COD$ intersect lines $BC$ and $AD$, for the second time, at points $M, N, P$and $Q$. Prove that the $MNPQ$ quadrilateral is inscribed in a circle of center $O$.

The three sides and the area of ​​a triangle are integers. What is the smallest value of the area of ​​this triangle?

2011 Brazilian L2 P2
Let $ ABCD $ be a convex quadrilateral such that $ AD = DC, AC = AB $ and $ \angle ADC = \angle CAB $. If $ M $ and $ N $ are midpoints of the $ AD $ and $ AB $ sides, prove that the $ MNC $ triangle is isosceles.

Inside a square of side $16$ are placed $1000$ points. Show that it is possible to put a equilateral triangle of side $2\sqrt3$ in the plane so that it covers at least $16$ of these points.

2012 Brazilian L2 P3
Let be a triangle $ ABC $, the midpoint of the $ AC $ and $ N $ side, and the midpoint of the $ AB $ side. Let $ r $ and $ s $ reflect the straight lines $ BM $ and $ CN $ on the straight $ BC $, respectively. Also define $ D $ and $ E $ as the intersection of the lines $ r $ and $ s $ and the line $ MN $, respectively. Let $ X $ and $ Y $ be the intersection points between the circumcircles of the triangles $ BDM $ and $ CEN $, $ Z $ the intersection of the lines $ BE $ and $ CD $ and $ W $ the intersection between the lines $ r $ and $ s $. Prove that $ XY, WZ $, and $ BC $ are concurrents.

2012 Brazilian L2 P4
The figure below shows a regular $ABCDE$ pentagon inscribed in an equilateral triangle MNP . Determine the measure of the angle $\angle CMD$.
2013 Brazilian L2 P3
Let $ABC$ a triangle. Let $D$ be a point on the circumcircle of this triangle and let $E , F$ be the feet of the perpendiculars from $A$ on $DB, DC$, respectively. Finally, let $N$ be the midpoint of $EF$. Let $M \ne N$ be the midpoint of  the side $BC$ . Prove that the lines $NA$ and $NM$ are perpendicular.

2013 Brazilian L2 P5
Let $ABC$ be a scalene triangle and $AM$ is the median relative to side $BC$. The diameter circumference $AM$ intersects for the second time the side $AB$ and $AC$ at points $P$ and $Q$, respectively, both different from $A$. Assuming that $PQ$ is parallel to $BC$, determine the measure of angle $ \angle BAC$.

Consider a positive integer $n$ and two points $A$ and $B$ in a plane. Starting from point $A$, $n$ rays and starting from point $B$, $n$ rays are drawn so that all of them are on the same half-plane defined by the line $AB$ and that the angles formed by the $2n$ rays with the segment $AB$ are all acute. Define circles passing through points $A$, $B$ and each meeting point between the rays. What is the smallest number of distinct circles that can be defined by this construction?

2014 Brazilian L2 P2
Let $AB$ be a diameter of the circunference $\omega$, let $C$ and $D$ be point in this circunference, such that $CD$ is perpedicular to $AB$. Let $E$ be the point of intersection of the segment $CD$ and the segment $AB$, and a point $P$ that is in the segment $CD, P$ is different of $E$. The lines $AP$ and $BP$ intersects $\omega$, in $F$ and $G$ respectively. If $O$ is the circumcenter of triangle $EFG$, show that the area of triangle $OCD$ is invariant, independent of the position of the point $P$.

Let $ABCD$ be a square and $O$ is your center. Let $E,F,G,H$ points in the segments $AB,BC,CD,AD$ respectively, such that $AE = BF = CG = DH$. The line $OA$ intersects the segment $EH$ in the point $X$, $OB$ intersects $EF$ in the point $Y$, $OC$ intersects $FG$ in the point $Z$ and $OD$ intersects $HG$ in the point $W$. If the $(EFGH) = 1$. Find $(ABCD) \times (XYZW)$

Note $(P)$ denote the area of the polygon $P$.

Let $ABCD$ be a convex quadrilateral. Let $E$ be  a intersection of line $AB$ with the line $CD$, and $F$ the intersection of line $BC$ with the line $AD$. Let $P$ and $Q$ be the foots of the perpendicular of $E$ in the lines $AD$ and $BC$ respectively, and let $R$ and $S$ be the foots of the perpendicular of $F$ in the lines $AB$ and $CD$, respectively. $T$ is the intersection of the line $ER$ with the line $FS$.
a) Show that, exist a circle that passes in the points $E, F, P, Q, R$ and $S$.
b)Show that, the circuncircle of triangle $RST$ is tangent with the circuncircle of triangle $QRB$

Let $ABC$ be a triangle and $n$ a positive integer. Consider on the side $BC$ the points $A_1, A_2, ..., A_{2^n-1}$ that divide the side into $2^n$ equal parts, that is, $BA_1=A_1A_2=...=A_{2^n-2}A_{2^n-1}=A_{2^n-1}C$. Set the points $B_1, B_2, ..., B_{2^n-1}$ and $C_1, C_2, ..., C_{2^n-1}$ on the sides $CA$ and $AB$, respectively, analogously. Draw the line segments $AA_1, AA_2, ..., AA_{2^n-1}$, $BB_1, BB_2, ..., BB_{2^n-1}$ and $CC_1, CC_2, ..., CC_{2^n-1}$. Find, in terms of $n$, the number of regions into which the triangle is divided.

2015 Brazilian L2 P6
Let $ABC$ a scalene triangle and $AD, BE, CF$ your angle bisectors, with $D$ in the segment $BC, E$ in the segment $AC$ and $F$ in the segment $AB$. If $\angle AFE = \angle ADC$. Determine $\angle BCA$.

2016 Brazilian L2 P2
The inner bisections of the $ \angle ABC $ and $ \angle ACB $ angles of the $ ABC $ triangle are at $ I $. The $ BI $ parallel line that runs through the point $ A $ finds the $ CI $ line at the point $ D $. The $ CI $ parallel line for $ A $ finds the $ BI $ line at the point $ E $. The lines $ BD $ and $ CE $ are at the point $ F $. Show that $ F, A $, and $ I $ are collinear if and only if $ AB = AC. $

Consider a scalene triangle $ ABC $ with $ AB <AC <BC. $ The $ AB $ side mediator cuts the $ B $ side at the $ K $ point and the $ AC $ prolongation at the $ U. $ point. $ AC $ side cuts $ BC $ side at $ O $ point and $ AB $ side extension at $ G$ point.  Prove that the $ GOKU $ quad is cyclic, meaning its four vertices are at same circumference.

2017 Brazilian L2 P1
The points $X, Y,Z$ are marked on the sides $AB, BC,AC$ of the triangle $ABC$, respectively. Points $A',B', C'$ are on the $XZ, XY, YZ$ sides of the triangle $XYZ$, respectively, so that $\frac{AB}{A'B'} = \frac{AB}{A'B'} =\frac{BC}{B'C'}= 2$ and $ABB'A',BCC'B',ACC'A'$ are trapezoids in which the sides of the triangle $ABC$ are bases.
a) Determine the ratio between the area of ​​the trapezium $ABB'A'$ and the area of ​​the triangle $A'B'X$.
b) Determine the ratio between the area of ​​the triangle  $XYZ$ and the area of ​​the triangle $ABC$.

2017 Brazilian L2 P5
Let $ABC$ be a triangle with  $AB \ne AC$, and let $K$ be the incenter. Let $P$ and $Q$ be the other points of the intersections of the circumcircle of triangle $BCK$  with the lines $AB$ and $AC$, respectively. Let $D$ be intersection of $AK$ and $BC$.
a) Show that $P, Q, D$ are collinear,
b) Let $T$, diiferent from $P$, be the intersection of the circumcircles of triangles $PQB$ and $QDC$. Prove that $T$ lies on the circumcircle of the triangle $ABC$.

2018 Brazilian L2 P3
Let $ABC$ be an acute-angled triangle with circumcenter $O$ and orthocenter $H$. The circle with center $X_a$ passes in the points $A$ and $H$ and is tangent to the circumcircle of $ABC$. Define $X_b, X_c$ analogously, let $O_a, O_b, O_c$ the symmetric of $O$ to the sides $BC, AC$ and $AB$, respectively. Prove that the lines $O_aX_a, O_bX_b, O_cX_c$ are concurrent.

 In $XYZ$ triangle, the incircle touches $XY$ and $XZ$ in $T$ and $W$, respectively. Prove that: $XT=XW=\frac{XY+XZ-YZ}2$ . Let $ABC$ a triangle and $D$ the foot of the perpendicular of $A$ in $BC$. Let $I$, $J$ be the incenters of $ABD$ and $ACD$, respectively. The incircles of $ABD$ and $ACD$ touch $AD$ in $M$ and $N$, respectively. Let $P$ be where the incircle of $ABC$ touches $AB$. The circle with centre $A$ and radius $AP$ intersects $AD$ in $K$.
b) Show that $\triangle IMK \cong \triangle KNJ$.
c) Show that $IDJK$ is cyclic.

Let $ABC$ be an acutangle triangle inscribed in a circle $\Gamma$ of center $O$. Let $D$ be the height of the vertex $A$. Let E and F be points over $\Gamma$ such that $AE = AD = AF$. Let $P$ and $Q$ be the intersection points of the $EF $ with sides $AB$ and $AC$ respectively. Let $X$ be the second intersection point of $\Gamma$ with the circle circumscribed to the triangle $AP Q$. Show that the lines $XD$ and $AO $ meet at a point above sobre

Let $ ABC $ be an acutangle triangle and $ D $ any point on the $ BC $ side. Let $ E $ be the symmetrical of $ D $ in $ AC $ and $ F $ is the symmetrical $ D $ relative to $ AB $. $ A $ straight $ ED $ intersects straight $ AB $ at $ G $, while straight $ F D $ intersects the line $ AC $ in $ H $. Prove that the points $ A, E, F, G$ and $ H $ are on the same circumference.

On the Cartesian plane, all points with both integer coordinates are painted blue. Two blue points are said to be mutually visible if the line segment that connects them has no other blue points . Prove that there is a set of $ 2019$ blue points that are mutually visible two by two.

Let $ABC$ be an acute triangle and $AD$ a height. The angle bissector of $\angle DAC$ intersects $DC$ at $E$. Let $F$ be a point on $AE$ such that $BF$ is perpendicular to $AE$. If $\angle BAE=45º$, find $\angle BFC$.
e.

Let $ABC$ be a triangle and $M$ the midpoint of $AB$. Let circumcircles of triangles $CMO$ and $ABC$ intersect at $K$ where $O$ is the circumcenter of $ABC$. Let $P$ be the intersection of lines $OM$ and $CK$. Prove that $\angle{PAK} = \angle{MCB}$.

Let $ABC$ be a scalene triangle and $\omega$ is your incircle. The sides $BC,CA$ and $AB$ are tangents to $\omega$ in $X,Y,Z$ respectively. Let $M$ be the midpoint of $BC$ and $D$ is the intersection point of $BC$ with the angle bisector of $\angle BAC$. Prove that $\angle BAX=\angle MAC$ if and only if $YZ$ passes by the midpoint of $AD$.

Let $ABC$ be an acute-angled triangle. Let $A_1$ be the midpoint of the arc $BC$ which contain the point $A$. Let $A_2$ and $A_3$ be the foot(s) of the perpendicular(s) of the point $A_1$ to the lines $AB$ and $AC$, respectively. Define $B_2,B_3,C_2,C_3$ analogously.
a) Prove that the line $A_2A_3$ cuts $BC$ in the midpoint.
b) Prove that the lines $A_2A_3,B_2B_3$ and $C_2C_3$ are concurrent.

Let $ABC$ be a triangle with $\angle ABC=90^{\circ}$. The square $BDEF$ is inscribed in $\triangle ABC$, such that $D,E,F$ are in the sides $AB,CA,BC$ respectively. The inradius of $\triangle EFC$ and $\triangle EDA$ are $c$ and $b$, respectively. Four circles $\omega_1,\omega_2,\omega_3,\omega_4$ are drawn inside the square $BDEF$, such that the radius of $\omega_1$ and $\omega_3$ are both equal to $b$ and the radius of $\omega_2$ and $\omega_4$ are both equal to $a$. The circle $\omega_1$ is tangent to $ED$, the circle $\omega_3$ is tangent to $BF$, $\omega_2$ is tangent to $EF$ and $\omega_4$ is tangent to $BD$, each one of these circles are tangent to the two closest circles and the circles $\omega_1$ and $\omega_3$ are tangents. Determine the ratio $\frac{c}{a}$.


source: www.obm.org.br

No comments:

Post a Comment