drop down menu

Friday, August 9, 2019

2011 JBMO Shortlist G3

Let $ABC$ be a triangle in which (${BL}$is the angle bisector of ${\angle{ABC}}$ $\left( L\in AC \right)$, ${AH}$ is an altitude of$\vartriangle ABC$ $\left( H\in BC \right)$ and ${M}$is the midpoint of the side ${AB}$. It is known  that the midpoints of the segments ${BL}$ and ${MH}$ coincides. Determine the internal angles of triangle $\vartriangle ABC$.


posted in aops here
my solutio

No comments:

Post a Comment