Around the triangle $ABC$ the circle is circumscribed, and at the vertex ${C}$ tangent ${t}$ to this circle is drawn. The line ${p}$, which is parallel to this tangent intersects the lines ${BC}$ and ${AC}$ at the points ${D}$ and ${E}$, respectively. Prove that the points $A,B,D,E$ belong to the same circle.
posted in aops hereolympiad geometry problems with aops links
problem collections with solutions from various International Mathematical Olympiads
olympiad geometry notes, books, magazines, articles, links
Σελίδες
- start page
- IMO 1959 - 2019 112p
- IMO Shortlist 1993 - 2018 (ISL) 203p
- IMO ISL 1968-92 186p
- IMO Longlist 1966-72 (ILL) 168p
- Balkan 1984- (BMO) 46p
- JBMO 1997- & Shortlist 2000- 115p
- ELMO 2009- & Shortlist 69p
- Balkan BMO Shortlist 2014- 37p
- National & TST
- Iranian Geometry 2014-9 (IGO) 76p
- Sharygin Geometry 2005-19 691p
- Oral Moscow Geometry 2012-9 102p
- Yasinsky Geometry 2017-9 54p
- geo olympiads
- other geo shortlists
- authors from Greece & Cyprus
- books (old)
- books (new)
- Team
- UK USA Canada
- ex-USSR
- In the World of Mathematics
- Crux
- Mathematical Excalibur
- Mathematical Reflections
- Quantum EN 92p
- RevistaOim
- Romanian Mathematical Magazine (RMM)
- books (pdf)
- geo mags (pdf - links)
- new proofs
- Canada IMO Training
- Jean-Louis Ayme
- geometry collections, articles, notes (pdf)
- olympiad problem collections with solutions (pdf)

Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου